scholarly journals iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus

Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 15
Author(s):  
Xin Li ◽  
Song Jiang ◽  
Xuhai Wang ◽  
Wenqiao Hui ◽  
Bin Jia

Cystic echinococcosis, caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis. The lifecycle of the E. granulosus parasite includes three consecutive stages that require specific gene regulation or protein expression to survive environmental shifts between definitive hosts and intermediate hosts. The aim of the present study is to screen and analyze the stage differential antigens to be considered for vaccine development against E. granulosus. By using the iTRAQ (isobaric tags for relative and absolute quantification) method, the differentially expressed proteins were selected from the three consecutive developmental stages of E. granulosus: oncosphere, adult tapeworms, and protoscolex. Through a bioinformatics analysis including Clusters of Orthologous Groups (COG), Gene Ontology (GO), and pathway metabolic annotation, we identified some proteins of interest from each stage. The results showed that a large number of differentially expressed proteins (375: oncosphere vs. adult, 346: oncosphere vs. protoscolex, and 391: adult vs. protoscolex) were identified from the three main lifecycle stages. Analysis of the differential protein pathways showed that these differential proteins are mainly enriched in metabolic pathways, Huntington’s diseases, Alzheimer’s diseases, and ribosome metabolic pathways. Interestingly, among these differential proteins, expression levels of paramyosin, HSP60, HSP70, HSP90, cathepsin L1, cathepsin D, casein kinase, and calmodulin were significantly higher in the oncosphere than in the adult or protoscolex (p < 0.05). We hope our findings will help to identify potential targets for diagnosis or for therapeutic and prophylactic intervention.

2021 ◽  
Author(s):  
Feng Miao ◽  
Yongbin Wang ◽  
Kun Yang ◽  
Wei Li ◽  
Chunrong Xiong ◽  
...  

Abstract Background: Schistosomiasis is an important zoonotic parasitic disease that is widely prevalent in tropical and subtropical countries and regions in the worldwide.Methods: We aimed to analyze the proteomic differences between adult S. japonicum worms in Weishan Lake of Shandong province and the Jiangsu Yangtse river. Isobaric tags for relative and absolute quantification (iTRAQ) assays were used to analyze the differential proteomic profiles between female and male adult worms.Results: A total of 2364 adult S. japonicum proteins were identified, and 1901 proteins were quantified by isobaric tags for relative and absolute quantification (iTRAQ) technology. Our results revealed 68 differentially expressed proteins (DEPs) in female adult worms and 55 DEPs in male adult worms. LC-MS/MS and bioinformatics analysis indicated that these DEPs are enriched in cellular composition, molecular function, biological function and catabolism pathways. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Domain and Clusters of Orthologous Groups (COG) analyses indicated that several groups of DEPs were involved in regulating transport, metabolism, signal transduction, energy production and conversion, defense and biosynthesis in adult S. japonicum worms. Our findings indicated that adult S. japonicum worms derived from O. hupensis that were transferred from permissive to nonpermissive areas exhibited moderate changes at the proteomic level. Moreover, snails transferred to the Weishan Lake did not change their schistosomiasis transmission ability and remained pathogenic in mice. In addition, three upregulated proteins (peptidylprolyl isomerase, heat shock protein 90α and receptor expression-enhancing protein (Q5DBJ1)) and three downregulated proteins (histone H3, histone H4 and receptor expression-enhancing protein (C1L9D7)) were found in both female and male adult worms. Conclusions: Proteomic analysis showed that differentially expressed proteins (DEPs) between adult S. japonicum worms in Weishan Lake of Shandong province and the Jiangsu Yangtse river. The results of this proteomics analysis of adult worms that hatched in two separate intermediate hosts help to improve our understanding of the growth and developmental mechanisms of S. japonicum in different environments. Under the South-to-North Water Diversion Project (SNWDP) framework, long-term surveillance is needed to prevent the diffusion of O. hupensis and to reduce the risk of schistosomiasis transmission.


Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Huai-Dong Hu ◽  
Feng Ye ◽  
Da-Zhi Zhang ◽  
Peng Hu ◽  
Hong Ren ◽  
...  

Multidrug resistance (MDR) is a major obstacle towards a successful treatment of gastric cancer. However, the mechanisms of MDR are intricate and have not been fully understood. To elucidate the molecular mechanisms of MDR in gastric cancer, we employed the proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by LC-MS/MS, using the vincristine-resistant SGC7901/VCR cell line and its parental SGC7901 cell line as a model. In total, 820 unique proteins were identified and 91 proteins showed to be differentially expressed in SGC7901/VCR compared with SGC7901. Several differentially expressed proteins were further validated by western blot analysis. Furthermore, the association of MVP, one of the highly expressed proteins in SGC7901/VCR, with MDR was verified. Our study is the first application of iTRAQ technology for MDR mechanisms analysis in gastric cancer, and many of the differentially expressed proteins identified have not been linked to MDR in gastric cancer before, which showed the value of this technology in identifying differentially expressed proteins in cancer.


Reproduction ◽  
2014 ◽  
Vol 147 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Xiaoli Chen ◽  
Huabin Zhu ◽  
Chuanhuo Hu ◽  
Haisheng Hao ◽  
Junfang Zhang ◽  
...  

Cryodamage is a major problem in semen cryopreservation, causing changes in the levels of proteins that influence the function and motility of spermatozoa. In this study, protein samples prepared from fresh and frozen–thawed boar spermatozoa were compared using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique coupled to 2D LC–MS/MS analysis. A total of 41 differentially expressed proteins were identified and quantified, including 35 proteins that were present at higher levels and six proteins that were present at lower levels in frozen–thawed spermatozoa by at least a mean of 1.79-fold (P<0.05). On classifying into ten distinct categories using bioinformatic analysis, most of the 41 differentially expressed proteins were found to be closely relevant to sperm premature capacitation, adhesions, energy supply, and sperm–oocyte binding and fusion. The expression of four of these proteins, SOD1, TPI1, ODF2, and AKAP3, was verified by western blot analysis. We propose that alterations in these identified proteins affect the quality of cryopreserved semen and ultimately lower its fertilizing capacity. This is the first study to compare protein levels in fresh and frozen–thawed spermatozoa using the iTRAQ technology. Our preliminary results provide an overview of the molecular mechanisms of cryodamage in frozen–thawed spermatozoa and theoretical guidance to improve the cryopreservation of boar semen.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 166 ◽  
Author(s):  
Qianqian He ◽  
Xinmei Fang ◽  
Tianhui Zhu ◽  
Shan Han ◽  
Hanmingyue Zhu ◽  
...  

Bambusa pervariabilis McClure × Dendrocalamopsis grandis (Q.H.Dai & X.l.Tao ex Keng f.) Ohrnb. blight is a widespread and dangerous forest fungus disease, and has been listed as a supplementary object of forest phytosanitary measures. In order to study the control of B. pervariabilis × D. grandis blight, this experiment was carried out. In this work, a toxin purified from the pathogen Arthrinium phaeospermum (Corda) Elli, which causes blight in B. pervariabilis × D. grandis, with homologous heterogeneity, was used as an inducer to increase resistance to B. pervariabilis × D. grandis. A functional analysis of the differentially expressed proteins after induction using a tandem mass tag labeling technique was combined with mass spectrometry and liquid chromatography mass spectrometry in order to effectively screen for the proteins related to the resistance of B. pervariabilis × D. grandis to blight. After peptide labeling, a total of 3320 unique peptides and 1791 quantitative proteins were obtained by liquid chromatography mass spectrometry analysis. Annotation and enrichment analysis of these peptides and proteins using the Gene ontology and Kyoto Encyclopedia of Genes and Genomes databases with bioinformatics software show that the differentially expressed protein functional annotation items are mainly concentrated on biological processes and cell components. Several pathways that are prominent in the Kyoto Encyclopedia of Genes and Genomes annotation and enrichment include metabolic pathways, the citrate cycle, and phenylpropanoid biosynthesis. In the Protein-protein interaction networks four differentially expressed proteins-sucrose synthase, adenosine triphosphate-citrate synthase beta chain protein 1, peroxidase, and phenylalanine ammonia-lyase significantly interact with multiple proteins and significantly enrich metabolic pathways. To verify the results of tandem mass tag, the candidate proteins were further verified by parallel reaction monitoring, and the results were consistent with the tandem mass tag data analysis results. It is confirmed that the data obtained by tandem mass tag technology are reliable. Therefore, the differentially expressed proteins and signaling pathways discovered here is the primary concern for subsequent disease resistance studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinwen Xian ◽  
Pengpeng Zhao ◽  
Ning Wang ◽  
Weiye Wang ◽  
Yanyan Zhang ◽  
...  

Cystic echinococcosis (CE) is a cosmopolitan zoonosis caused by the larval stage of Echinococcus granulosus, which affects humans and a wide range of mammalian intermediate hosts. Parasite tetraspanin proteins are crucial for host-parasite interactions, and therefore they may be useful for vaccine development or disease diagnosis. In the present study, the major antigen coding sequence of tetraspanin 11 (Eg-TSP11) from E. granulosus was determined. The results of immunolocalization showed that Eg-TSP11 was mainly located in the tegument of adult worms and protoscoleces. Western blotting analysis showed that the serum from dogs injected with recombinant Eg-TSP11 (rEg-TSP11) could recognize Eg-TSP11 among natural protoscolex proteins. Moreover, the serum from dogs with E. granulosus infection also recognized rEg-TSP11. Serum indirect enzyme-linked immunosorbent assays demonstrated that IgG levels gradually increased after the first immunization with rEg-TSP11 compared with those in the control group. Furthermore, the serum levels of interleukin 4, interleukin 5, and interferon gamma were significantly altered in the rEg-TSP11 group. Importantly, we found that vaccination with rEg-TSP11 significantly decreased worm burden and inhibited segment development in a dog model of E. granulosus infection. Based on these findings, we speculated that rEg-TSP11 might be a potential candidate vaccine antigen against E. granulosus infection in dogs.


2020 ◽  
Author(s):  
Tianyue Yu ◽  
Yan-Hong Yong ◽  
Jun-yu Li ◽  
Biao Fang ◽  
Can-ying Hu ◽  
...  

Abstract Background : With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3°C; RH = 90%). Result: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2334 ◽  
Author(s):  
Jianhui Ma ◽  
Wen Dong ◽  
Daijing Zhang ◽  
Xiaolong Gao ◽  
Lina Jiang ◽  
...  

Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shujiang Li ◽  
Xinmei Fang ◽  
Shan Han ◽  
Tianhui Zhu ◽  
Hanmingyue Zhu

AbstractIn this study, TMT (tandem mass tag)-labeled quantitative protein technology combined with LC–MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) was used to isolate and identify the proteins of the hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) and the bamboo inoculated with the pathogenic fungi Arthrinium phaeospermum. A total of 3320 unique peptide fragments were identified after inoculation with either A. phaeospermum or sterile water, and 1791 proteins were quantified. A total of 102 differentially expressed proteins were obtained, of which 66 differential proteins were upregulated and 36 downregulated in the treatment group. Annotation and enrichment analysis of these peptides and proteins using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases with bioinformatics software showed that the differentially expressed protein functional annotation items were mainly concentrated on biological processes and cell components. The LC–PRM/MS (liquid chromatography-parallel reaction monitoring/mass spectrometry) quantitative analysis technique was used to quantitatively analyze 11 differential candidate proteins obtained by TMT combined with LC–MS/MS. The up–down trend of 10 differential proteins in the PRM results was consistent with that of the TMT quantitative analysis. The coincidence rate of the two results was 91%, which confirmed the reliability of the proteomic results. Therefore, the differentially expressed proteins and signaling pathways discovered here may be the further concern for the bamboo-pathogen interaction studies.


Sign in / Sign up

Export Citation Format

Share Document