Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus

Planta Medica ◽  
2018 ◽  
Vol 84 (17) ◽  
pp. 1265-1270 ◽  
Author(s):  
Ivy Ramis ◽  
Júlia Vianna ◽  
Ana Reis ◽  
Andrea von Groll ◽  
Daniela Ramos ◽  
...  

AbstractNew drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus. Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism.

1995 ◽  
Vol 22 (1) ◽  
pp. 7 ◽  
Author(s):  
JA Campbell ◽  
BR Loveys ◽  
VWK Lee ◽  
S Strother

An inhibitory effect on the growth of Lemna minor L. cultures has been demonstrated in xylem exudate from Vitis vinifera L. var. Waltham Cross bled from canes cut near the time of budburst. Most inhibitory activity was detected up to the time of maximal daily exudation, which corresponded closely with budburst. After this time the inhibitory activity rapidly disappeared. A similar pattern occurred in each of the 3 years of the study, 1988-1990. Using ultrafiltration, it was shown that most of the growth inhibitor activity of the crude exudate was located in the 0.5-10 kDa fraction. This fraction exhibited a seasonal variation in its bioactivity similar to that ofthe crude exudate samples. The 0.5-10 kDa fraction was found to contain abscisic acid but not in a sufficient quantity to account for the inhibitory effects. When chromatographically separated fractions corresponding to oligosaccharides were pooled, biological activity equivalent to that of the crude exudate was retained, which provides evidence that the inhibitor is possibly an oligosaccharide.


2017 ◽  
Vol 37 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Jusciêne B. Moura ◽  
Agueda C. de Vargas ◽  
Gisele V. Gouveia ◽  
João J. de S. Gouveia ◽  
Juracy C. Ramos-Júnior ◽  
...  

ABSTRACT: Cladonia substellata Vainio is a lichen found in different regions of the world, including the Northeast of Brazil. It contains several secondary metabolites with biological activity, including usnic acid, which has exhibited a wide range of biological activities. The aim of this study was to evaluate the in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid. Initially, Staphylococcus spp., derived from samples of skin and ears of dogs and cats with suspected pyoderma and otitis, were isolated and analyzed. In antimicrobial susceptibility testing against Staphylococcus spp., 77% (105/136) of the isolates were resistant to the antimicrobials tested. In the assessment of biofilm production, 83% (113/136) were classified as producing biofilm. In genetic characterization, 32% (44/136) were positive for blaZ, no isolate (0/136) was positive for the mecA gene, and 2% (3/136) were positive for the icaD gene. The in vitro antimicrobial activity of the organic extract of C. substellata and purified usnic acid against Staphylococcus spp. ranged from 0.25mg/mL to 0.0019mg/mL, inhibiting bacterial growth at low concentrations. The substances were more effective against biofilm-producing bacteria (0.65mg/mL-0.42mg/mL) when compared to non-biofilm producing bacteria (2.52mg/mL-2.71mg/mL). Usnic acid and the organic extract of C. substellata can be effective in the treatment of pyoderma and otitis in dogs and cats caused by Staphylococcus spp.


2012 ◽  
Vol 47 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Nasima Akhtar ◽  
Monzur Morshed Ahmeda ◽  
Nishat Sarker ◽  
Khandaker Rayhan Mahbuba ◽  
Abdul Matin Sarker

Growth response of Spirulina platensis in papaya skin extract media and their antimicrobial activity were studied. Five different concentrations  e.g. 10gm/L, 8gm/L, 6 gm/L, 4 gm/L and 2gm/L of Papaya (Carica papaya) skin extract media and BD1 (control) medium were used  in this study. After 8 days of cultivation, the optical density (0.33) was recorded in BD1 medium and among the five different concentrations  of papaya skin extract media the maximum was found (0.31) in 6gm/L. Antimicrobial activity of Spirulina platensis grown in three  media namely Zarrouk, BD1 media and media made from papaya skin extract was also studied. Only freeze dried Spirulina platensis powder  extract showed inhibitory effect against bacteria and no antifungal activity was observed. DOI: http://dx.doi.org/10.3329/bjsir.v47i2.11445 Bangladesh J. Sci. Ind. Res. 47(2), 147-152, 2012  


2000 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
K Bielawski ◽  
A Galicka ◽  
A Bielawska ◽  
K Sredzińska

Pentamidine despite its rather high toxicity, is currently in clinical use. For development of new drugs of this type it is important to know the mechanism of their action. Two new amidines (I and II) and 4',6-diamidino-2-phenylindole (DAPI) were found in preliminary experiments to inhibit protein synthesis in vitro in the cell-free rat liver system. The three compounds differed in the precise mode of action. The inhibitory effect of I on the activity of the eukaryotic elongation factor eEF-2 and ribosomes seems to suggest that the binding site of eEF-2 on the ribosome was blocked by this compound. eEF-2 has been identified as the primary target of II and eEF-1 as the primary target of DAPI in the system studied.


Author(s):  
PAULA ALEJANDRA GIRALDO VILLAMIL ◽  
ANDRÉS CAMILO ANDRADE BURBANO ◽  
LUIS POMBO OSPINA ◽  
JANETH ARIAS PALACIOS ◽  
ÓSCAR EDUARDO RODRÍGUEZ AGUIRRE

Objective: The objective of the study was to determine the antimicrobial activity of leaf and flower extract in Chromolaena scabra (L. f.) R.M. King and H. Rob., against selected strains of bacteria and fungi. Methods: The agar diffusion method with plate perforation was developed; the microorganisms used were strains of Staphylococcus aureus and Escherichia coli, Aspergillus niger, and Penicillium digitatum. Rifampicin was used as a positive control. The evaluation was performed by measuring the diameter of the growth inhibition zones around the holes. The inhibitory effect of the plant extracts was obtained by its efficiency compared to the positive control. A comparison with fluconazole and ketoconazole was performed to determine how much of the extract is required to cause inhibition of fungal growth from the standard. Results: IC50 was determined by relating the ln of mass evaluated with respect to the square of the inhibition halo; ethanolic extracts of leaves and flowers of petroleum ether with IC50 values of 85.8 mg/ml and 50.3 mg/ml showed the highest inhibitory effect against S. aureus; the extract of petroleum ether and ethanol from leaves with IC50 of 64 mg/ml and 60 mg/ml, respectively. They were effective with A. niger. Leaf petroleum ether extract showed the best relative antifungal activity against A. niger with respect to fluconazole equivalent to 459.51 when fluconazole is 1.0. Conclusion: The extracts with high potential to inhibit the growth of microorganisms were determined to be ether flowers of petroleum and ethanol leaf extracts.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Yoshiyuki Yamada ◽  
Thomas Dick

ABSTRACT With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition. The mycobacterial caseinolytic protease ClpP1P2 is a degradative protease that recently gained interest as a genetically and pharmacologically validated drug target for tuberculosis. The first whole-cell active ClpP1P2 inhibitor, the human proteasome inhibitor bortezomib, is currently undergoing lead optimization to introduce selectivity for the bacterial target. How inhibition of ClpP1P2 translates into whole-cell antimicrobial activity is little understood. Previous work has shown that the caseinolytic protease gene regulator ClgR is an activator of the clpP1P2 genes and also suggested that this transcription factor may be a substrate of the protease. Here, we employ promoter activity reporters and direct mRNA level measurements showing that bortezomib treatment of Mycobacterium bovis BCG increased transcription of clpP1P2 and other ClgR-dependent promoters, suggesting that inhibition of ClpP1P2 increases cellular ClgR levels. Then, we carried out red fluorescent protein-ClgR fusion analyses to show that ClgR is indeed a substrate of ClpP1P2 and to identify ClgR’s C-terminal nonapeptide APVVSLAVA as the signal sufficient for recognition and efficient protein degradation by ClpP1P2. Interestingly, accumulation of ClgR appears to be toxic for bacilli, suggesting a mechanism for how pharmacological inhibition of ClpP1P2 protease activity by bortezomib translates into whole-cell antibacterial activity. IMPORTANCE With 9 million new cases and more than 1 million deaths per year, tuberculosis, caused by Mycobacterium tuberculosis, is the biggest infectious disease killer globally. New drugs for the treatment of the drug-resistant forms of the disease are needed. Recently, a new target-lead couple, the mycobacterial protease ClpP1P2 and the human anticancer drug bortezomib, was identified. However, we know little about how expression of this protease is regulated, which proteins in the bacterium it degrades, how the protease recognizes its target proteins, and how the inhibition of ClpP1P2 exerts whole-cell antimicrobial activity. Here, we show that the ClpP1P2 protease regulates its own expression, and we identified a new substrate and a new substrate recognition sequence and a mechanism for how ClpP1P2 inhibition causes bacterial growth inhibition.


Author(s):  
Pingping Jia ◽  
Yi Zhang ◽  
Jian Xu ◽  
Mei Zhu ◽  
Shize Peng ◽  
...  

Abstract Background Resistance to anti-tuberculosis (TB) drug is a major issue in TB control, and demands the discovery of new drugs targeting virulence factor ESX-1. Methods We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacterium and reducing bacterial virulence. We further investigated the probability of inducing drug-resistance and the underlying mechanism using M-PFC. Results A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drug, and exhibit high potency against chronic mycobacterial infection. Conclusion Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


Author(s):  
Kokkaiah Irulandi ◽  
Sethupandian Geetha ◽  
Palanichamy Mehalingam

Objective: To determine antimicrobial activity of methanol, ethyl acetate and acetone extracts of Myristica fatua, Alstonia boonei, Helicteres isora, Vitex altissima and Atalantia racemosa  against different species of pathogens, Streptococcus feacalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphyllococcus aureus, and Candida albicans.Methods: Antimicrobial activity of plant extracts was measured by agar well diffusion method.Results: Acetone extracts of Alstonia boonei showed the highest inhibitory effect against Escherichia coli (21.00 ± 1.00 mm) and Streptococcus faecalis (19.00 ± 1.00 mm). All the extracts of Heliteres isora leaves showed different zone of inhibition observed in all the tested pathogens ranges between (8.13 ± 1.53 – 15.25 ± 1.23 mm). Ethyl acetate extract of Vitex altissima showed highest activity against Bacillus sublilis (19.67 ± 1.53 mm). Methanol and acetone leaves extracts of Atalantia racemosa have good fungal activity against the Candida albicans (19.33 ± 1.26 mm - 16.00 ± 1.00 mm). Methanol extract of Myristica fatua showed high antimicrobial activity against Pseudomonas aeruginosa (15.10 ± 0.17 mm) and Bacillus subtilis (14.23 ± 0.21 mm).Conclusion: The results from the study suggest that the leaves Myristica fatua, Alstonia boonei, Helicteres isora, Vitex altissima and Atalantia racemosa showed good antimicrobial activity against the different pathogens. They are used as the alternative source for the control and treatment of microbial infections.Keywords: Antimicrobial activity, Leaves extracts,  Well diffusion method, Pathogenic strains.


2019 ◽  
Vol 82 (3) ◽  
pp. 441-453 ◽  
Author(s):  
ZHENHONG GAO ◽  
ERIC BANAN-MWINE DALIRI ◽  
JUN WANG ◽  
DONGHONG LIU ◽  
SHIGUO CHEN ◽  
...  

ABSTRACT Foodborne pathogens are serious challenges to food safety and public health worldwide. Fermentation is one of many methods that may be used to inactivate and control foodborne pathogens. Many studies have reported that lactic acid bacteria (LAB) can have significant antimicrobial effects. The current review mainly focuses on the antimicrobial activity of LAB, the mechanisms of this activity, competitive growth models, and application of LAB for inhibition of foodborne pathogens.


Planta Medica ◽  
2018 ◽  
Vol 85 (02) ◽  
pp. 103-111 ◽  
Author(s):  
Nadezhda Dyrkheeva ◽  
Olga Luzina ◽  
Aleksandr Filimonov ◽  
Olga Zakharova ◽  
Ekaterina Ilina ◽  
...  

AbstractUsnic acid, a lichen secondary metabolite produced by a whole number of lichens, has attracted the interest of researchers owing to its broad range of biological activity, including antiviral, antibiotic, anticancer properties, and it possessing a certain toxicity. The synthesis of new usnic acid derivatives and the investigation of their biological activity may lead to the discovery of compounds with better pharmacological and toxicity profiles. In this context, a series of new usnic acid derivatives comprising a terpenoid moiety were synthesized, and their ability to inhibit the catalytic activity of the human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 was investigated. The most potent compounds (15a, 15b, 15g, and 16a, 16b, 16g) had IC50 values in the range of 0.33 – 2.7 µM. The inhibitory properties were mainly dependent on the flexibility and length of the terpenoid moiety, but not strongly dependent on the configuration of the asymmetric centers. The synthesized derivatives showed low cytotoxicity against human cell lines in an MTT assay. They could be used as a basis for the development of more effective anticancer therapies when combined with topoisomerase 1 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document