Multifunctional YY1 in Liver Diseases

2017 ◽  
Vol 37 (04) ◽  
pp. 363-376 ◽  
Author(s):  
Shuang Yang ◽  
Jian Zhou ◽  
Weiwu Gao ◽  
Xia Yang ◽  
Di Yang ◽  
...  

AbstractThe transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression, depending on the cellular context. While YY1 is ubiquitously expressed and highly conserved between species, its role varies among the diverse cell types and includes proliferation, differentiation, and apoptosis. Upregulated YY1 expression is found in pathogenic conditions, such as human hepatocellular carcinoma and hepatitis B virus infection, and its roles in the molecular pathogenic mechanisms in liver (i.e., fibrosis, carcinogenesis, viral-induced injury) are currently being elucidated. The most recent studies have revealed that YY1 is deeply involved in such dysregulated cellular metabolisms as glycometabolism, lipid metabolism, and bile acid metabolism, which are all involved in various diseases. In this review, we will summarize the current knowledge on YY1 in liver diseases, providing a focused discussion on the characterized and probable underlying mechanisms, as well as a reasoned evaluation of the potential for YY1-mediated pathology as drug targets in liver disease therapies.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Eungyeong Jang ◽  
Bum-Joon Kim ◽  
Kyung-Tae Lee ◽  
Kyung-Soo Inn ◽  
Jang-Hoon Lee

Artemisia capillarishas been recognized as an herb with therapeutic efficacy in liver diseases and widely used as an alternative therapy in Asia. Numerous studies have reported the antisteatotic, antioxidant, anti-inflammatory, choleretic, antiviral, antifibrotic, and antitumor activities ofA. capillaris. These reports support its therapeutic potential in various liver diseases such as chronic hepatitis B virus (HBV) infection, cirrhosis, and hepatocellular carcinoma. In addition, several properties of its various constituents, which provide clues to the underlying mechanisms of its therapeutic effects, have been studied. This review describes the scientific evidence supporting the therapeutic potential ofA. capillarisand its constituents in various liver diseases.


2016 ◽  
Vol 1 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Hanno Niess ◽  
Michael N. Thomas ◽  
Tobias S. Schiergens ◽  
Axel Kleespies ◽  
Karl-Walter Jauch ◽  
...  

AbstractMesenchymal stromal cells (MSCs) are adult progenitor cells with a high migratory and differentiation potential, which influence a broad range of biological functions in almost every tissue of the body. Among other mechanisms, MSCs do so by the secretion of molecular cues, differentiation toward more specialized cell types, or influence on the immune system. Expanding tumors also depend on the contribution of MSCs to building a supporting stroma, but the effects of MSCs appear to go beyond the mere supply of connective tissues. MSCs show targeted “homing” toward growing tumors, which is then followed by exerting direct and indirect effects on cancer cells. Several research groups have developed novel strategies that make use of the tumor tropism of MSCs by engineering them to express a transgene that enables an attack on cancer growth. This review aims to familiarize the reader with the current knowledge about MSC biology, the existing evidence for MSC contribution to tumor growth with its underlying mechanisms, and the strategies that have been developed using MSCs to deploy an anticancer therapy.


2020 ◽  
Vol 21 (18) ◽  
pp. 6648
Author(s):  
Dobrochna Dolicka ◽  
Cyril Sobolewski ◽  
Marta Correia de Sousa ◽  
Monika Gjorgjieva ◽  
Michelangelo Foti

AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3’-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2462
Author(s):  
Cornelia Dietrich ◽  
Thomas G. Hofmann

Ferroptosis is a regulated form of cell death characterized by iron dependency and increased lipid peroxidation. Initially assumed to be selectively induced in tumour cells, there is increasing evidence that ferroptosis plays an important role in pathophysiology and numerous cell types and tissues. Deregulated ferroptosis has been linked to human diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Along these lines, ferroptosis is a promising pathway to overcoming therapy resistance of cancer cells. It is therefore of utmost importance to understand the cellular signalling pathways and the molecular mechanisms underlying ferroptosis regulation, including context-specific effects mediated by the neighbouring cells through cell–cell contacts. Here, we give an overview on the molecular events and machinery linked to ferroptosis induction and commitment. We further summarize and discuss current knowledge about the role of cell–cell contacts, which differ in ferroptosis regulation between normal somatic cells and cancer cells. We present emerging concepts on the underlying mechanisms, address open questions, and discuss the possible impact of cell–cell contacts on exploiting ferroptosis in cancer therapy.


2011 ◽  
Vol 7 (2) ◽  
pp. 97 ◽  
Author(s):  
Niels Voigt ◽  
Dobromir Dobrev ◽  
◽  

Atrial fibrillation (AF) is the most common arrhythmia and is associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. Present drugs used for the therapy of AF (antiarrhythmics and anticoagulants) have major limitations, including incomplete efficacy, risks of life-threatening proarrhythmic events and bleeding complications. Non-pharmacological ablation procedures are efficient and apparently safe, but the very large size of the patient population allows ablation treatment of only a small number of patients. These limitations largely result from limited knowledge about the underlying mechanisms of AF and there is a hope that a better understanding of the molecular basis of AF may lead to the discovery of safer and more effective therapeutic targets. This article reviews the current knowledge about AF-related ion-channel remodelling and discusses how these alterations might affect the efficacy of antiarrhythmic drugs.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1393
Author(s):  
Thanyaporn Dechtawewat ◽  
Sittiruk Roytrakul ◽  
Yodying Yingchutrakul ◽  
Sawanya Charoenlappanit ◽  
Bunpote Siridechadilok ◽  
...  

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Isabell Kaczmarek ◽  
Tomáš Suchý ◽  
Simone Prömel ◽  
Torsten Schöneberg ◽  
Ines Liebscher ◽  
...  

Abstract G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.


2021 ◽  
Vol 22 (14) ◽  
pp. 7253
Author(s):  
Georgiana Neag ◽  
Melissa Finlay ◽  
Amy J. Naylor

Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form “type H” capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.


Immuno ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 78-90
Author(s):  
Johannes Burtscher ◽  
Grégoire P. Millet

Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.


2021 ◽  
Vol 22 (7) ◽  
pp. 3649
Author(s):  
Patricia Ramos-Ramírez ◽  
Omar Tliba

Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and “directly” regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.


Sign in / Sign up

Export Citation Format

Share Document