scholarly journals A critical role for plasminogen in inflammation

2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Sarah K. Baker ◽  
Sidney Strickland

Plasminogen and its active form, plasmin, have diverse functions related to the inflammatory response in mammals. Due to these roles in inflammation, plasminogen has been implicated in the progression of a wide range of diseases with an inflammatory component. In this review, we discuss the functions of plasminogen in inflammatory regulation and how this system plays a role in the pathogenesis of diseases spanning organ systems throughout the body.

Author(s):  
Steven J. Gill ◽  
Michael H. Nathanson

Anaesthesia induces changes in many organ systems within the body, though clearly none more so than the central nervous system. The physiology of the normal central nervous system is complex and the addition of chronic pathology and polypharmacy creates a significant challenge for the anaesthetist. This chapter demonstrates a common approach for the anaesthetist and specific considerations for a wide range of neurological conditions. Detailed preoperative assessment is essential to gain understanding of the current symptomatology and neurological deficit, including at times restrictions on movement and position. Some conditions may pose challenges relating to communication, capacity, and consent. As part of the consent process, patients may worry that an anaesthetic may aggravate or worsen their neurological disease. There is little evidence to support this understandable concern; however, the risks and benefits must be considered on an individual patient basis. The conduct of anaesthesia may involve a preference for general or regional anaesthesia and requires careful consideration of the pharmacological and physiological impact on the patient and their disease. Interactions between regular medications and anaesthetic drugs are common. Chronically denervated muscle may induce hyperkalaemia after administration of succinylcholine. Other patients may have an altered response to non-depolarizing agents, such as those suffering from myasthenia gravis. The most common neurological condition encountered is epilepsy. This requires consideration of the patient’s antiepileptic drugs, often relating to hepatic enzyme induction or less commonly inhibition and competition for protein binding, and the effect of the anaesthetic technique and drugs on the patient’s seizure risk. Postoperative care may need to take place in a high dependency unit, especially in those with limited preoperative reserve or markers of frailty, and where the gastrointestinal tract has been compromised, alternative routes of drug delivery need to be considered. Overall, patients with chronic neurological conditions require careful assessment and preparation, a considered technique with attention to detail, and often higher levels of care during their immediate postoperative period.


2014 ◽  
Vol 52 (2) ◽  
pp. R151-R163 ◽  
Author(s):  
Andrea Weckman ◽  
Antonio Di Ieva ◽  
Fabio Rotondo ◽  
Luis V Syro ◽  
Leon D Ortiz ◽  
...  

Autophagy is an important cellular process involving the degradation of intracellular components. Its regulation is complex and while there are many methods available, there is currently no single effective way of detecting and monitoring autophagy. It has several cellular functions that are conserved throughout the body, as well as a variety of different physiological roles depending on the context of its occurrence in the body. Autophagy is also involved in the pathology of a wide range of diseases. Within the endocrine system, autophagy has both its traditional conserved functions and specific functions. In the endocrine glands, autophagy plays a critical role in controlling intracellular hormone levels. In peptide-secreting cells of glands such as the pituitary gland, crinophagy, a specific form of autophagy, targets the secretory granules to control the levels of stored hormone. In steroid-secreting cells of glands such as the testes and adrenal gland, autophagy targets the steroid-producing organelles. The dysregulation of autophagy in the endocrine glands leads to several different endocrine diseases such as diabetes and infertility. This review aims to clarify the known roles of autophagy in the physiology of the endocrine system, as well as in various endocrine diseases.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Baila Shakaib ◽  
Tanzeel Zohra ◽  
Aamer Ikram ◽  
Muhammad Bin Shakaib ◽  
Amna Ali ◽  
...  

AbstractSince its outbreak in 2019, the coronavirus disease (COVID-19) has become a pandemic, affecting more than 52 million people and causing more than 1 million mortalities globally till date. Current research reveals a wide array of disease manifestations and behaviors encompassing multiple organ systems in body and immense systemic inflammation, which have been summarized in this review. Data from a number of scientific reviews, research articles, case series, observational studies, and case reports were retrieved by utilizing online search engines such as Cochrane, PubMed, and Scopus from December 2019 to November 2020. The data for prevalence of signs and symptoms, underlying disease mechanisms and comorbidities were analyzed using SPSS version 25. This review will discuss a wide range of COVID-19 clinical presentations recorded till date, and the current understanding of both the underlying general as well as system specific pathophysiologic, and pathogenetic pathways. These include direct viral penetration into host cells through ACE2 receptors, induction of inflammosomes and immune response through viral proteins, and the initiation of system-wide inflammation and cytokine production. Moreover, peripheral organ damage and underlying comorbid diseases which can lead to short term and long term, reversible and irreversible damage to the body have also been studied. We concluded that underlying comorbidities and their pathological effects on the body contributed immensely and determine the resultant disease severity and mortality of the patients. Presently there is no drug approved for treatment of COVID-19, however multiple vaccines are now in use and research for more is underway.


2019 ◽  
Vol 20 (18) ◽  
pp. 4374 ◽  
Author(s):  
Maria Rosaria Rusciano ◽  
Elena Sommariva ◽  
Victorine Douin-Echinard ◽  
Michele Ciccarelli ◽  
Paolo Poggio ◽  
...  

Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.


2021 ◽  
Vol 7 (2) ◽  
pp. 79
Author(s):  
Jasminka Talapko ◽  
Martina Juzbašić ◽  
Tatjana Matijević ◽  
Emina Pustijanac ◽  
Sanja Bekić ◽  
...  

Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals’ skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida’s normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida’s virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia–invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.


2008 ◽  
Vol 136 (Suppl. 1) ◽  
pp. 25-31
Author(s):  
Danijela Vucevic ◽  
Branislav Pesic ◽  
Ljiljana Markovic ◽  
Tatjana Radosavljevic ◽  
Ivan Milovanovic ◽  
...  

Pathophysiology, a special field of medicine, integrates knowledge from various biomedical sciences. It is a dynamic study that provides the basic link between the fundamental and clinical medical sciences and their application to clinical practice. Pathophysiology deals with disordered or altered functions. The emphasis is on understanding aetiology and pathogenesis of disorder. Consequently, the study of pathophysiology is essential to understand the rationale for appropriate diagnosis and therapeutic intervention in disease conditions, as well as preventive measures and procedures. Physiology is the study of normal, healthy bodily functions, as opposed to pathophysiology, which is the study of dysfunctions in living organisms. Namely, when something disrupts physiological processes, it enters the realm of pathophysiology. As opposed to pathoanatomy, which examines morphologic alterations resulting from disease in the body, pathophysiology looks at the detailed dysfunctions of cells, tissues, organs or organ systems, that come from or, alternately, cause disease. Pathophysiology draws attention, not only to an access to the organ affected with pathological process, but also the whole access to the patient. Thereby, there are two approaches to pathophysiology, experimental and clinical. An experiment is the fundamental pathophysiological method that enables the students to actively participate in the learning process of the nature and cause of various diseases. Throughout time the conceptual framework of pathophysiology, both as a medical discipline and a university course is designed to present the students physiological disturbances in the clearest and most enjoyable way. In spite of a constantly growing body of biomedical knowledge and techniques, pathophysiologists are still far from a complete understanding of molecular system dysfunctions and their relevance in a wide range of diseases.


Author(s):  
Tahereh Ebrahimi ◽  
Kamran Hosseini ◽  
Hossein Ahangari ◽  
Pourya Gholizadeh ◽  
Vahideh Tarhriz

: Hyaluronic acid or hyaluronan (HA) is a natural biopolymer composed of D-glucuronic acid and N-acetylglucosamine units, distributed as a non-sulfated and anionic glycosaminoglycan in important tissues of the body, and is commercially and biologically important. Its biological properties are determined by the molecular weight and dispersity which are suitable for particular medical and cosmetic applications. The synthesis of well-defined and monodisperse HA is still a significant obstacle and an impressive research field for advanced medical applications. High polydispersity by bacterial fermentation, the lack of knowledge of the mechanism required to start and continue the synthesis process, increased cost of raw materials to produce HA, clarification and explanation of factors limiting synthesis in bacterial systems are among the important challenges of hyaluronic acid synthesis. Hyaluronan synthase plays a critical role in HA molecular mass by producing a wide range of HA involved in various biological processes. Hyaluronan biosynthesis has been considered extensively; however, the control of its size and weight during the synthesis process is poorly investigated. This review focuses on these uncharted biochemical details to obtain the uniform chain lengths of Hyaluronan by protein engineering and regulating the function of Hyaluronan synthase.


Author(s):  
Amir Kiyoumarsioskouei ◽  
Mohammad S Saidi ◽  
Bobak Mosadegh ◽  
Bahar Firoozabadi

Hydrostatic pressure is one of the most fundamental and common mechanical stimuli in the body, playing a critical role in the homeostasis of all organ systems. Kidney function is affected by high blood pressure, namely hypertension, by the increased pressure acting on the glomerular capillary walls. This general effect of hypertension is diagnosed as a chronic disease, but underlying mechanistic causes are still not well understood. This paper reports a portable and adaptive device for studying the effects of hydrostatic pressure on a monolayer of cells. The fabricated device fits within a conventional incubation system and microscope. The effects of various pressures and durations were evaluated on a confluent layer of human endothelial cells. We found that a fluid pressure (i.e. hydrostatic pressure) can alter the morphology of the cells and that returning to an ambient pressure can reverse the changes in morphology. Thus, this study provides a proof-of-principle demonstration that this tool can be utilized for exploring the effects of hydrostatic pressure on mammalian cells.


2007 ◽  
Vol 60 (3-4) ◽  
pp. 156-159
Author(s):  
Dejana Popovic ◽  
Predrag Brkic ◽  
Dejan Nesic ◽  
Stanimir Stojiljkovic ◽  
Ljiljana Scepanovic ◽  
...  

Introduction. The athletic heart syndrome is characterized by morphological, functional and electrophysiological alterations as an adaptive response to vigorous physical activity. Athletes heart is predominantly associated with a programmed, intensive training. But as there are different kinds of physical activities, the degree of these changes is highly variable. Electrophysiological characteristics of the athlete's heart. The response of the body to vigorous physical activity is a multiorgan system phenomenon. The integrated functioning of each of these organ systems is very important, but the cardiovascular system plays a critical role in mediating the activity. Because of that, most changes in the neurohumoral regulation pre- dominantly affect the cardiovascular system. These changes include: depression of sympathetic activity and stimulation of parasympathetic activity, so electrophysiological characteristics of the athlete's heart must differ from the sedentary. Although these facts, are well known, the athlete's heart is not a precisely defined concept. It is a gray zone between physiology and pathology. Conclusion. Considering the number of sudden cardiac deaths in athletes, it is needless to say how important it is to distinguish physiological changes of the heart due to physical activity, and pathological changes due to some cardiac diseases.


2020 ◽  
Vol 20 (23) ◽  
pp. 2080-2093
Author(s):  
Nalini Natarajan ◽  
Vijay Thiruvenkatam

Tuberous sclerosis complex (TSC) is a rare genetic disease, which is characterized by noncancerous tumors in multi-organ systems in the body. Mutations in the TSC1 or TSC2 genes are known to cause the disease. The resultant mutant proteins TSC1 (hamartin) and TSC2 (tuberin) complex evade its normal tumor suppressor function, which leads to abnormal cell growth and proliferation. Both TSC1 and TSC2 are involved in several protein-protein interactions, which play a significant role in maintaining cellular homeostasis. The recent biochemical, genetic, structural biology, clinical and drug discovery advancements on TSC give a useful insight into the disease as well as the molecular aspects of TSC1 and TSC2. The complex nature of TSC disease, a wide range of manifestations, mosaicism and several other factors limits the treatment choices. This review is a compilation of the course of TSC, starting from its discovery to the current findings that would take us a step ahead in finding a cure for TSC.


Sign in / Sign up

Export Citation Format

Share Document