Picropodophyllin inhibits type I endometrial cancer cell proliferation via disruption of the PI3K/Akt pathway

2019 ◽  
Vol 51 (7) ◽  
pp. 753-760
Author(s):  
Lin Dong ◽  
Meirong Du ◽  
Qianzhou Lv

Abstract The type-I insulin-like growth factor receptor (IGF-IR) is overexpressed in endometrial cancer. High IGF-IR expression was considered as an important prognostic factor for tumor progression. The purpose of this study was to investigate the role and molecular mechanism of IGF-IR inhibitor picropodophyllin (PPP) in the growth and development of endometrial cancer. High expression of IGF-IR was observed in endometrial cancer tissues, as well as in ECC-1 and KLE cell lines. PPP suppressed the number of clones of ECC-1 and KLE cell lines; however, it had no significant effect on HEC-1-A cell line, which expressed lower IGF-IR than ECC-1 and KLE cell lines. Furthermore, PPP reduced cell proliferation capacity, inhibited the IGF-IR mRNA expression, and suppressed protein phosphorylation of IGF-IR and Akt in the three cell lines. In addition, PPP inhibited the protein expression of survivin in KLE cell line after 1 h of exposure, though this effect did not last for prolonged time. In conclusion, IGF-IR was mostly overexpressed in type I endometrial cancer. High IGF-IR expression was an important prognostic factor of tumor progression. PPP mediated the down-regulation of IGF-IR phosphorylation and inhibited cell proliferation via the PI3K/Akt signal pathway. PPP may have the potential to become a clinical treatment target in endometrial carcinoma.

2020 ◽  
Vol 19 ◽  
pp. 153303382098078
Author(s):  
Yanjuan Guo ◽  
Nannan Zhao ◽  
Jianli Zhou ◽  
Jianxin Dong ◽  
Xing Wang

Objective: The present study aimed to explore the function of sirtuin 2 (SIRT2) on cell proliferation, apoptosis, rat sarcoma virus (RAS)/ extracellular signal-regulated kinase (ERK) pathway in endometrial cancer (EC). Methods: SIRT2 expression in human EC cell lines and human endometrial (uterine) epithelial cell (HEEC) line was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. SIRT2 knock-down and control knock-down plasmids were transfected into HEC1A cells, respectively; SIRT2 overexpression and control overexpression plasmids were transfected into Ishikawa cells, respectively. After transfection, SIRT2, HRas proto-oncogene, GTPase (HRAS) expressions were evaluated by RT-qPCR and western blot. ERK and phosphorylated ERK (pERK) expressions were evaluated by western blot. Meanwhile, cell proliferation and cell apoptosis were measured. Results: Compared to normal HEEC cell line, SIRT2 mRNA and protein expressions were increased in most human EC cell lines (including HEC1A, RL952 and AN3CA), while were similar in Ishikawa cell line. In HEC1A cells, SIRT2 knock-down decreased cell proliferation but increased apoptosis. In Ishikawa cells, SIRT2 overexpression induced cell proliferation but inhibited apoptosis. For RAS/ERK pathway, SIRT2 knock-down reduced HRAS and inactivated pERK in HEC1A cells, whereas SIRT2 overexpression increased HRAS and activated pERK in Ishikawa cells, suggesting that SIRT2 was implicated in the regulation of RAS/ERK pathway in EC cells. Conclusion: SIRT2 contributes to the EC tumorigenesis, which appears as a potential therapeutic target.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 368
Author(s):  
Elda M. Melchor Martínez ◽  
Luisaldo Sandate-Flores ◽  
José Rodríguez-Rodríguez ◽  
Magdalena Rostro-Alanis ◽  
Lizeth Parra-Arroyo ◽  
...  

Cacti fruits are known to possess antioxidant and antiproliferative activities among other health benefits. The following paper evaluated the antioxidant capacity and bioactivity of five clarified juices from different cacti fruits (Stenocereus spp., Opuntia spp. and M. geomettizans) on four cancer cell lines as well as one normal cell line. Their antioxidant compositions were measured by three different protocols. Their phenolic compositions were quantified through high performance liquid chromatography and the percentages of cell proliferation of fibroblasts as well as breast, prostate, colorectal, and liver cancer cell lines were evaluated though in vitro assays. The results were further processed by principal component analysis. The clarified juice from M. geomettizans fruit showed the highest concentration of total phenolic compounds and induced cell death in liver and colorectal cancer cells lines as well as fibroblasts. The clarified juice extracted from yellow Opuntia ficus-indica fruit displayed antioxidant activity as well as a selective cytotoxic effect on a liver cancer cell line with no toxic effect on fibroblasts. In conclusion, the work supplies evidence on the antioxidant and antiproliferative activities that cacti juices possess, presenting potential as cancer cell proliferation preventing agents.


2020 ◽  
Author(s):  
Adriane Feijo Evangelista ◽  
Renato J Oliveira ◽  
Viviane A O Silva ◽  
Rene A D C Vieira ◽  
Rui M Reis ◽  
...  

Abstract Introduction: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. Methods: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex, flow cytometry and transwell assays were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. Results: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. Conclusion: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1273 ◽  
Author(s):  
Rajani Rai ◽  
Kathleen Gong Essel ◽  
Doris Mangiaracina Benbrook ◽  
Justin Garland ◽  
Yan Daniel Zhao ◽  
...  

Sulforaphane exerts anti-cancer activity against multiple cancer types. Our objective was to evaluate utility of sulforaphane for endometrial cancer therapy. Sulforaphane reduced viability of endometrial cancer cell lines in association with the G2/M cell cycle arrest and cell division cycle protein 2 (Cdc2) phosphorylation, and intrinsic apoptosis. Inhibition of anchorage-independent growth, invasion, and migration of the cell lines was associated with sulforaphane-induced alterations in epithelial-to-mesenchymal transition (EMT) markers of increased E-cadherin and decreased N-cadherin and vimentin expression. Proteomic analysis identified alterations in AKT, mTOR, and ERK kinases in the networks of sulforaphane effects in the Ishikawa endometrial cancer cell line. Western blots confirmed sulforaphane inhibition of AKT, mTOR, and induction of ERK with alterations in downstream signaling. AKT and mTOR inhibitors reduced endometrial cancer cell line viability and prevented further reduction by sulforaphane. Accumulation of nuclear phosphorylated ERK was associated with reduced sensitivity to the ERK inhibitor and its interference with sulforaphane activity. Sulforaphane induced apoptosis-associated growth inhibition of Ishikawa xenograft tumors to a greater extent than paclitaxel, with no evidence of toxicity. These results verify sulforaphane’s potential as a non-toxic treatment candidate for endometrial cancer and identify AKT, mTOR, and ERK kinases in the mechanism of action with interference in the mechanism by nuclear phosphorylated ERK.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2630
Author(s):  
Hye Jin Lee ◽  
Seungho Shin ◽  
Jinho Kang ◽  
Ki-Cheol Han ◽  
Yeul Hong Kim ◽  
...  

Lapatinib, a Human Epidermal growth factor Receptor 2 (HER2)-targeting therapy in HER2-overexpressing breast cancer, has been widely used clinically, but the prognosis is still poor because most patients acquire resistance. Therefore, we investigated mechanisms related to lapatinib resistance to evaluate new therapeutic targets that may overcome resistance. Lapatinib-resistant cell lines were established using SKBR3 and BT474 cells. We evaluated cell viability and cell signal changes, gene expression and protein changes. In the xenograft mouse model, anti-tumor effects were evaluated using drugs. Analysis of the protein interaction network in two resistant cell lines with different lapatinib resistance mechanisms showed that HSP90 protein was commonly increased. When Heat Shock Protein 90 (HSP90) inhibitors were administered alone to both resistant cell lines, cell proliferation and protein expression were effectively inhibited. However, inhibition of cell proliferation and protein expression with a combination of lapatinib and HSP90 inhibitors showed a more synergistic effect in the LR-BT474 cell line than the LR-SKBR3 cell line, and the same result was exhibited with the xenograft model. These results suggest that HSP90 inhibitors in patients with lapatinib-resistant Estrogen Receptor (ER) (+) HER2 (+) breast cancer are promising therapeutics for future clinical trials.


2019 ◽  
Vol 18 ◽  
pp. 153303381986197 ◽  
Author(s):  
Xiaohong Yan ◽  
Hui Yu ◽  
Yao Liu ◽  
Jie Hou ◽  
Qiao Yang ◽  
...  

MicroRNA-27a-3p has been implicated to play crucial roles in human cancers. However, the biological role and underlying mechanisms of microRNA-27a-3p in regulating nonsmall lung cancer remain unclear. MicroRNA-27a-3p expression levels in non-small lung cancer cell lines were detected by quantitative real-time polymerase chain reaction, using a normal cell line as control. The effects of microRNA-27a-3p on cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 assay and flow cytometry assay. Luciferase activity reporter assay and Western blot were conducted to validate the potential targets of miR27a-3p after preliminary screening by TargetScan. Effect of microRNA-27a-3p or homeobox B8 on the overall survival of patients with non-small lung cancer was analyzed at Kaplan-Meier Plotter website. MicroRNA-27a-3p expression levels were significantly reduced in non-small lung cancer cell lines compared with normal cell line. Overexpression of microRNA-27a-3p inhibits non-small lung cancer cell proliferation but promotes cell apoptosis. Homeobox B8 was further validated as a functional target of microRNA-27a-3p. Collectively, our results indicated that microRNA-27a-3p acts as a tumor suppressor in non-small lung cancer via targeting homeobox B8.


2020 ◽  
Vol 7 ◽  
Author(s):  
Priscila E. Kobayashi ◽  
Patrícia F. Lainetti ◽  
Antonio F. Leis-Filho ◽  
Flávia K. Delella ◽  
Marcio Carvalho ◽  
...  

Canine prostate cancer (PC) presents a poor antitumor response, usually late diagnosis and prognosis. Toceranib phosphate (TP) is a nonspecific inhibitor of receptor tyrosine kinases (RTKs), including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and c-KIT. This study aimed to evaluate VEGFR2, PDGFR-β, and c-KIT protein expression in two established canine PC cell lines (PC1 and PC2) and the transcriptome profile of the cells after treatment with TP. Immunofluorescence (IF) analysis revealed VEGFR2 and PDGFR-β protein expression and the absence of c-KIT protein expression in both cell lines. After TP treatment, only the viability of PC1 cells decreased in a dose-dependent manner. Transcriptome and enrichment analyses of treated PC1 cells revealed 181 upregulated genes, which were related to decreased angiogenesis and cell proliferation. In addition, we found upregulated PDGFR-A, PDGFR-β, and PDGF-D expression in PC1 cells, and the upregulation of PDGFR-β was also observed in treated PC1 cells by qPCR. PC2 cells had fewer protein-protein interactions (PPIs), with 18 upregulated and 22 downregulated genes; the upregulated genes were involved in the regulation of parallel pathways and mechanisms related to proliferation, which could be associated with the resistance observed after treatment. The canine PC1 cell line but not the PC2 cell line showed decreased viability after treatment with TP, although both cell lines expressed PDGFR and VEGFR receptors. Further studies could explain the mechanism of resistance in PC2 cells and provide a basis for personalized treatment for dogs with PC.


Sign in / Sign up

Export Citation Format

Share Document