scholarly journals Prediction of outcomes after heart transplantation by machine learning models

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Briasoulis ◽  
S Moustakidis ◽  
A Tzani ◽  
I Doulamis ◽  
P Kampaktsis

Abstract Background Models based on traditional statistics for the prediction of outcomes after heart transplantation (HT) have moderate accuracy. We sought to develop and validate state-of-the-art machine learning (ML) models to predict mortality and acute rejection after contemporary HT. Methods We included adult HT recipients from the UNOS database between 2010–2018 using solely pre-transplant clinical and laboratory variables. The study cohort was randomly split in a derivation and a validation cohort with a 3:1 ratio. An effective feature selection algorithm was used to identify strong predictors of 1-year mortality and rejection in the training cohort. Results were used to train the ML models, which were then internally tested using the validation cohort. LIME explainability analysis was used for the best performing ML model. A similar subgroup analysis was performed for 3- and 5-year survival. Results The study cohort comprised of 18,625 patients (53±13 years, 73% males). At 1-year after cardiac transplant, there were 2,334 (12.5%) deaths. Out of a total of 134 pre-transplant variables, 39 and 27 were selected as highly predictive of 1-year mortality and acute rejection respectively, and were used in the ML models. Areas under the curve for the prediction of 1-year survival were 0.689, 0.642, 0.649, 0.637, 0.526 for the Adaboost, Logistic Regression, Decision Tree, Support Vector Machine and K-nearest neighbor models respectively, whereas the IMPACT score had an AUC of 0.569. For the prediction of 1-year acute rejection, Adaboost achieved the highest predictive performance (AUC 0.629). LIME explainability analysis identified the relative impact of the 10 strongest predictors of 1-year mortality and acute rejection. Subgroup analysis using a similar methodology for 3- and 5-year survival yielded AUC of 0.609 and 0.610 using 31 and 91 selected variables respectively. Conclusion ML models created and validated using a contemporary cohort of the UNOS database showed improved accuracy in predicting survival and acute rejection after HT. FUNDunding Acknowledgement Type of funding sources: None.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1106
Author(s):  
Yan Hu ◽  
Lijia Xu ◽  
Peng Huang ◽  
Xiong Luo ◽  
Peng Wang ◽  
...  

A rapid and nondestructive tea classification method is of great significance in today’s research. This study uses fluorescence hyperspectral technology and machine learning to distinguish Oolong tea by analyzing the spectral features of tea in the wavelength ranging from 475 to 1100 nm. The spectral data are preprocessed by multivariate scattering correction (MSC) and standard normal variable (SNV), which can effectively reduce the impact of baseline drift and tilt. Then principal component analysis (PCA) and t-distribution random neighborhood embedding (t-SNE) are adopted for feature dimensionality reduction and visual display. Random Forest-Recursive Feature Elimination (RF-RFE) is used for feature selection. Decision Tree (DT), Random Forest Classification (RFC), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) are used to establish the classification model. The results show that MSC-RF-RFE-SVM is the best model for the classification of Oolong tea in which the accuracy of the training set and test set is 100% and 98.73%, respectively. It can be concluded that fluorescence hyperspectral technology and machine learning are feasible to classify Oolong tea.


2019 ◽  
Vol 11 (11) ◽  
pp. 1380 ◽  
Author(s):  
Tharindu Abeysinghe ◽  
Anita Simic Milas ◽  
Kristin Arend ◽  
Breann Hohman ◽  
Patrick Reil ◽  
...  

Unmanned aerial vehicles (UAV) are increasingly used for spatiotemporal monitoring of invasive plants in coastal wetlands. Early identification of invasive species is necessary in planning, restoring, and managing wetlands. This study assessed the effectiveness of UAV technology to identify invasive Phragmites australis in the Old Woman Creek (OWC) estuary using machine learning (ML) algorithms: Neural network (NN), support vector machine (SVM), and k-nearest neighbor (kNN). The ML algorithms were compared with the parametric maximum likelihood classifier (MLC) using pixel- and object-based methods. Pixel-based NN was identified as the best classifier with an overall accuracy of 94.80% and the lowest error of omission of 1.59%, the outcome desirable for effective eradication of Phragmites. The results were reached combining Sequoia multispectral imagery (green, red, red edge, and near-infrared bands) combined with the canopy height model (CHM) acquired in the mid-growing season and normalized difference vegetation index (NDVI) acquired later in the season. The sensitivity analysis, using various vegetation indices, image texture, CHM, and principal components (PC), demonstrated the impact of various feature layers on the classifiers. The study emphasizes the necessity of a suitable sampling and cross-validation methods, as well as the importance of optimum classification parameters.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xing Xiong ◽  
Jia Wang ◽  
Su Hu ◽  
Yao Dai ◽  
Yu Zhang ◽  
...  

ObjectiveTo determine whether machine learning based on conventional magnetic resonance imaging (MRI) sequences have the potential for the differential diagnosis of multiple myeloma (MM), and different tumor metastasis lesions of the lumbar vertebra.MethodsWe retrospectively enrolled 107 patients newly diagnosed with MM and different metastasis of the lumbar vertebra. In total 60 MM lesions and 118 metastasis lesions were selected for training classifiers (70%) and subsequent validation (30%). Following segmentation, 282 texture features were extracted from both T1WI and T2WI images. Following regression analysis using the least absolute shrinkage and selection operator (LASSO) algorithm, the following machine learning models were selected: Support‐Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Artificial Neural Networks (ANN), and Naïve Bayes (NB) using 10-fold cross validation, and the performances were evaluated using a confusion matrix. Matthews correlation coefficient (MCC), sensitivity, specificity, and accuracy of the models were also calculated.ResultsTo differentiate MM and metastasis, 13 features in the T1WI images and 9 features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier from the T2WI images achieved the best performance (MCC = 0.605) with accuracy, sensitivity, and specificity of 0.815, 0.879, and 0.790, respectively, in the validation cohort. To differentiate MM and metastasis subtypes, eight features in the T1WI images and seven features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier from the T2WI images achieved the best performance (MCC = 0.560, 0.412, 0.449), respectively, with accuracy = 0.648; sensitivity 0.714, 0.821, 0.897 and specificity 0.775, 0.600, 0.640 for the MM, lung, and other metastases, respectively, in the validation cohort.ConclusionsMachine learning–based classifiers showed a satisfactory performance in differentiating MM lesions from those of tumor metastasis. While their value for distinguishing myeloma from different metastasis subtypes was moderate.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarv Priya ◽  
Tanya Aggarwal ◽  
Caitlin Ward ◽  
Girish Bathla ◽  
Mathews Jacob ◽  
...  

AbstractSide experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle (LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). Various side study experiments were evaluated: Original data without and with intraclass correlation (ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine learning and feature selection strategies were evaluated. Primary analysis included all PH patients with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957–0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance of combined LV and RV masks was superior to individual masks alone. There was variation in top performing models across all approaches (AUC 0.862–0.958). DAFIT approach with features from combined LV and RV masks provide superior performance with poor performance of feature filtering approaches. Model performance varies based upon the feature selection and model combination.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 374 ◽  
Author(s):  
Sudhanshu Kumar ◽  
Monika Gahalawat ◽  
Partha Pratim Roy ◽  
Debi Prosad Dogra ◽  
Byung-Gyu Kim

Sentiment analysis is a rapidly growing field of research due to the explosive growth in digital information. In the modern world of artificial intelligence, sentiment analysis is one of the essential tools to extract emotion information from massive data. Sentiment analysis is applied to a variety of user data from customer reviews to social network posts. To the best of our knowledge, there is less work on sentiment analysis based on the categorization of users by demographics. Demographics play an important role in deciding the marketing strategies for different products. In this study, we explore the impact of age and gender in sentiment analysis, as this can help e-commerce retailers to market their products based on specific demographics. The dataset is created by collecting reviews on books from Facebook users by asking them to answer a questionnaire containing questions about their preferences in books, along with their age groups and gender information. Next, the paper analyzes the segmented data for sentiments based on each age group and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches including maximum entropy, support vector machine, convolutional neural network, and long short term memory to study the impact of age and gender on user reviews. Experiments have been conducted to identify new insights into the effect of age and gender for sentiment analysis.


Sign in / Sign up

Export Citation Format

Share Document