IMMU-33. NEOANTIGEN-SPECIFIC T CELLS CAN INFILTRATE IDH-MUTANT LOWER GRADE GLIOMAS AND PERSIST IN THE PERIPHERAL BLOOD

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi99-vi100
Author(s):  
Michael Zhang ◽  
Cliff Wang ◽  
Zheng Pan ◽  
Benjamin Yuen ◽  
Songming Peng ◽  
...  

Abstract The prospect of using immunotherapy for IDH-mutant LGGs has been daunting given the immune-poor microenvironment and low mutational burden. We hypothesized that LGG-targeting T cells might still be present at low frequency and with limited regional infiltration into the tumor. To improve sensitivity, we combined high-density multi-region tumor sampling with high-throughput neoantigen-T cell screening for a patient with WHO Grade II diffuse astrocytoma who eventually progressed, at second recurrence, to anaplastic astrocytoma. We performed maximal-anatomic sampling from 10 distinct regions of the tumor at the initial resection, as well as single sampling at first recurrence, for exome-based prediction of clonal and subclonal expressed neoantigens, RNAseq-based estimation of regional immune cell composition, and T cell receptor (TCR) beta deep sequencing. Based on our predictions, we then generated a barcoded library of patient-specific peptide-HLA multimers loaded with predicted neopeptides. Using this library, neoantigen-specific CD8 T cells were captured and isolated from patient peripheral blood and subjected to single cell TCR sequencing. We screened patient-derived peripheral blood drawn two years after initial resection and identified five T cell clones recognizing three LGG neoepitopes. Two neoepitopes were derived from truncal, tumor-wide mutations, including a truncating splice-site mutation in TP53 and a missense mutation in MRPL46. Each of these neoepitopes were recognized by two distinct TCRs, consistent with TCR convergence. A third neoepitope was derived from a subclonal MRPL46 mutation. Using the TCR beta sequence as a molecular barcode, TCRs specific to the 2 clonal neoepitopes, but not the subclonal neoepitope, were detectable in the glioma and blood at initial resection, as well as in the recurrent glioma. In summary, we demonstrate the existence and persistence of neoantigen-targeting T cells within the blood and tumor of an IDH-mutant LGG patient. These findings suggest a feasible methodology to develop personalized T cell-based immunotherapies for IDH-mutant LGGs.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi123
Author(s):  
Christina Jackson ◽  
John Choi ◽  
JiaJia Zhang ◽  
Anna Piotrowski ◽  
Tobias Walbert ◽  
...  

Abstract BACKGROUND Immune checkpoint inhibitors (ICIs) are not uniformly effective in glioblastoma treatment. Immunogenomic determinants may identify patients who are most likely to benefit from these therapies. Therefore, we compared the immunogenomic phenotype of a responder to combination anti-LAG-3 and anti-PD-1 therapy to non-responders. METHODS We performed T cell receptor (TCR) sequencing and gene expression analysis on pre-treatment, post-chemoradiation, and post-immunotherapy tumor specimens of glioblastoma patients treated with anti-LAG3 in combination with anti-PD-1 after first recurrence (NCT02658981, ongoing). We evaluated T cell clonotypes and immunophenotype of serially collected peripheral blood mononuclear cells (PBMCs) during treatment using multi-parametric flow cytometry. RESULTS To date, six patients have been enrolled in the initial anti-LAG-3 and anti-PD-1 cohort. One patient demonstrated complete response, one had stable disease, and four had progressive disease by radiographic evaluation. The responder demonstrated substantially higher TCR clonality in the resected tumor at initial diagnosis compared to non-responders (mean 0.028 vs. 0.005). Shared tumor infiltrating clonotypes with pre-immunotherapy PBMCs exhibited an increase in frequency from initial resection (6.8%) to resection at recurrence (20%). The responder’s tumor at initial resection exhibited increased gene signatures of PD1low CD8+ T cells, chemokine signaling, and interferon gamma pathways. On PBMC phenotypic analysis, the responder demonstrated significantly higher percentages of CD137+ CD8+T cells (median 8.38% vs 3.24%, p=0.02) and lower percentages of Foxp3+CD137+ CD4+T cells compared to non-responders (median 18.5% vs. 38.5%, p=0.006). Interestingly, dynamic analysis of PBMCs showed that the responder demonstrated a lower percentage of PD1+ CD8+ T cells pre-immunotherapy (median 2.5% vs.12.4%, p=0.002), with persistent decrease over the course of treatment while non-responders showed no consistent pattern. CONCLUSION Our preliminary results demonstrate significant differences in tumor and peripheral blood immunogenomic characteristics between responder and non-responders to anti-LAG3 and anti-PD-1 therapy. These immunogenomic characteristics may help stratify patients’ response to combination ICIs.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii6-iii7
Author(s):  
H Wirsching ◽  
E Terksikh ◽  
S Manuela ◽  
K Carsten ◽  
R Patrick ◽  
...  

Abstract BACKGROUND Isocitrate dehydrogenase (IDH) wildtype glioblastoma is associated with distinctive peripheral blood immune cell profiles that evolve under first line chemoirradiation with temozolomide. Whether peripheral blood immune cell profiles at recurrence are associated with survival of IDH wildtype glioblastoma has not been studied in detail. PATIENTS AND METHODS Peripheral blood mononuclear cells (PBMC) of 21 healthy donors and of 52 clinically well-annotated patients with IDH wildtype glioblastoma were analyzed by 11-color flow cytometry at 1st recurrence after standard chemoirradiation with temozolomide and at 2nd recurrence after dose-intensified temozolomide re-challenge. Patients were treated within the randomized phase II trial DIRECTOR, which explored the efficacy of dose-intensified temozolomide at first recurrence of glioblastoma. Patients were classified based on unsupervised analyses of PBMC profiles at 1stand 2ndrecurrence. Associations with survival were explored in multivariate Cox models controlling for established prognostic and predictive factors. RESULTS At 1strecurrence, two patient clusters were identified which differed in CD4+ T-cell fractions, but not with respect to CD8+ T-cells, CD4+;CD25+;FoxP3+ regulatory T-cells, B-cells or monocytes. The composition of CD4+, CD8+ or regulatory T-cell fractions was similar in both clusters. All control samples clustered with the CD4high cluster. Patients in both clusters did not differ by established prognostic factors, including age, O6-methylguanine-DNA-methyl-transferase (MGMT) gene promoter methylation, tumor volume, Karfnosky performance score or steroid use. Progression-free survival was similar (CD4high vsCD4low 2.1 vs 2.4 months, p=0.19), whereas post-recurrence overall survival was longer among the CD4highcluster (12.7 vs 8.7 months, p= 0.004). At 2nd recurrence, monocyte fractions increased, whereas memory CD4+ T-cell fractions decreased. Unsupervised segregation of patients by CD4+ subpopulations yielded two clusters characterized by the abundance of memory T-cell fractions and higher memory CD4+ fractions were associated with longer overall survival at 2nd recurrence (p=0.004). The reported prognostic associations were retained in multivariate Cox models controlling for established prognostic factors. CONCLUSION We conclude that temozolomide-associated memory CD4+ T-cell depletion may have deteriorating effects on the survival of glioblastoma patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingzhan Zhang ◽  
Shirong Yu ◽  
Wen Hu ◽  
Man Wang ◽  
Dilinuer Abudoureyimu ◽  
...  

Vitiligo is a common immune-related depigmentation condition, and its pathogenesis remains unclear. This study used a combination of bioinformatics methods and expression analysis techniques to explore the relationship between immune cell infiltration and gene expression in vitiligo. Previously reported gene expression microarray data from the skin (GSE53146 and GSE75819) and peripheral blood (GSE80009 and GSE90880) of vitiligo patients and healthy controls was used in the analysis. R software was used to filter the differentially expressed genes (DEGs) in each dataset, and the KOBAS 2.0 server was used to perform functional enrichment analysis. Compared with healthy controls, the upregulated genes in skin lesions and peripheral blood leukocytes of vitiligo patents were highly enriched in immune response pathways and inflammatory response signaling pathways. Immunedeconv software and the EPIC method were used to analyze the expression levels of marker genes to obtain the immune cell population in the samples. In the lesional skin of vitiligo patients, the proportions of macrophages, B cells and NK cells were increased compared with healthy controls. In the peripheral blood of vitiligo patients, CD8+ T cells and macrophages were significantly increased. A coexpression analysis of the cell populations and DEGs showed that differentially expressed immune and inflammation response genes had a strong positive correlation with macrophages. The TLR4 receptor pathway, interferon gamma-mediated signaling pathway and lipopolysaccharide-related pathway were positively correlated with CD4+ T cells. Regarding immune response-related genes, the overexpression of IFITM2, TNFSF10, GZMA, ADAMDEC1, NCF2, ADAR, SIGLEC16, and WIPF2 were related to macrophage abundance, while the overexpression of ICOS, GPR183, RGS1, ILF2 and CD28 were related to CD4+ T cell abundance. GZMA and CXCL10 expression were associated with CD8+ T cell abundance. Regarding inflammatory response-related genes, the overexpression of CEBPB, ADAM8, CXCR3, and TNIP3 promoted macrophage infiltration. Only ADORA1 expression was associated with CD4+ T cell infiltration. ADAM8 and CXCL10 expression were associated with CD8+ T cell abundance. The overexpression of CCL18, CXCL10, FOS, NLRC4, LY96, HCK, MYD88, and KLRG1, which are related to inflammation and immune responses, were associated with macrophage abundance. We also found that immune cells infiltration in vitiligo was associated with antigen presentation-related genes expression. The genes and pathways identified in this study may point to new directions for vitiligo treatment.


Author(s):  
Craig M. Rive ◽  
Eric Yung ◽  
Lisa Dreolini ◽  
Daniel J. Woodsworth ◽  
Robert A. Holt

AbstractAnti-CD19 CAR-T therapy for B cell malignancies has shown clinical success, but a major limitation is the logistical complexity and high cost of manufacturing autologous cell products. Direct infusion of viral gene transfer vectors to initiate in vivo CAR-T transduction, expansion and anti-tumor activity could provide an alternative, universal approach for CAR-T and related immune effector cell therapies that circumvents ex vivo cell manufacturing. To explore the potential of this approach we first evaluated human and murine CD8+ T cells transduced with VSV-G pseudotyped lentivectors carrying an anti-CD19CAR-2A-GFP transgene comprising either an FMC63 (human) or 1D3 (murine) anti-CD19 binding domain. To evaluate CD19 antigen-driven CAR-T proliferation in vitro we co-cultured transduced murine T cells with an excess of irradiated splenocytes and observed robust expansion over a 9 week period relative to control T cells transduced with a GFP transgene (mean fold expansion +/- SD: ID3-CD19CAR-GFP modified T cells, 12.2 +/- 0.09 (p < 0.001); FMC63-CD19CAR-GFP modified T cells 8.8 +/- 0.03 (p < 0.001). CAR-T cells isolated at the end of the expansion period showed potent B cell directed cytolytic activity in vitro. Next, we administered approximately 20 million replication-incompetent lentiviral particles carrying either ID3-CD19CAR-GFP, FMC63-CD19CAR-GFP, or GFP-only transgene to to wild-type C57BL/6 mice by tail vein infusion and monitored the dynamics of immune cell subsets isolated from peripheral blood at weekly intervals. We saw emergence of a persistent CAR-transduced CD3+ T cell population beginning week 3-4 that reaching a maximum of 13.5 +/- 0.58 % (mean +/- SD) and 7.8 +/- 0.76% of the peripheral blood CD3+ T cell population in mice infused with ID3-CD19CAR-GFP lentivector or FMC63-CD19CAR-GFP lentivector, respectively, followed by a rapid decline, in each case of, the B cell content of peripheral blood. Complete B cell aplasia was apparent by week 5 and was sustained until the end of the protocol (week 8). None of these changes were observed in mice infused with GFP-only control lentivector, and significant CAR positive populations were not observed within other immune cell subsets, including macrophage, natural killer, or B cells. Within the T cell compartment, CD8+ effector memory cells were the predominant CAR-positive subset. Modest weight loss of 5.5 +/- 2.97 % (mean +/- SD) observed in some animals receiving an anti-CD19CAR-GFP transgene during the protocol. These results indicate that direct IV infusion of lentiviral particles carrying an anti-CD19 CAR transgene can transduce T cells that then fully ablate endogenous B cells in wild type mice. Based on these results it may be useful to further explore, using currently available vectors, the feasibility of systemic gene therapy as a modality for CAR-T intervention.


Author(s):  
P. A. Bousquet ◽  
S. Meltzer ◽  
A. J. Fuglestad ◽  
T. Lüders ◽  
Y. Esbensen ◽  
...  

Abstract Purpose A significant percentage of colorectal cancer patients proceeds to metastatic disease. We hypothesised that mitochondrial DNA (mtDNA) polymorphisms, generated by the high mtDNA mutation rate of energy-demanding clonal immune cell expansions and assessable in peripheral blood, reflect how efficiently systemic immunity impedes metastasis. Patients and methods We studied 44 rectal cancer patients from a population-based prospective biomarker study, given curative-intent neoadjuvant radiation and radical surgery for high-risk tumour stage and followed for metastatic failure. Blood specimens were sampled at the time of diagnosis and analysed for the full-length mtDNA sequence, composition of immune cell subpopulations and damaged serum mtDNA. Results Whole blood total mtDNA variant number above the median value for the study cohort, coexisting with an mtDNA non-H haplogroup, was representative for the mtDNA of circulating immune cells and associated with low risk of a metastatic event. Abundant mtDNA variants correlated with proliferating helper T cells and cytotoxic effector T cells in the circulation. Patients without metastatic progression had high relative levels of circulating tumour-targeting effector T cells and, of note, the naïve (LAG-3+) helper T-cell population, with the proportion of LAG-3+ cells inversely correlating with cell-free damaged mtDNA in serum known to cause antagonising inflammation. Conclusion Numerous mtDNA polymorphisms in peripheral blood reflected clonal expansion of circulating helper and cytotoxic T-cell populations in patients without metastatic failure. The statistical associations suggested that patient’s constitutional mtDNA manifests the helper T-cell capacity to mount immunity that controls metastatic susceptibility. Trial registration ClinicalTrials.gov NCT01816607; registration date: 22 March 2013.


2020 ◽  
Author(s):  
Leonard Daniël Samson ◽  
A. Mieke H. Boots ◽  
José A. Ferreira ◽  
H. Susan J. Picavet ◽  
Lia G. H. de Rond ◽  
...  

Abstract Background: With advancing age, the composition of leukocyte subpopulations in peripheral blood is known to change, but how this change differs between men and women and how it relates to frailty is poorly understood. Thus, our aim in this exploratory study was to investigate whether frailty is associated with changes in immune cell subpopulations and whether associations differed between men and women. Therefore, we performed in-depth immune cell phenotyping by enumerating subsets of T cells, B cells, NK cells, monocytes, and neutrophils in peripheral blood of 289 elderly people between 60-87 years of age. Associations between frailty and each immune cell subpopulation were tested separately in men and women and were adjusted for age and CMV serostatus. In addition, a random forest algorithm was used to predict a participant’s frailty score based on enumeration of immune cell subpopulations. Results: Frailty was observed to be associated with numerical increases in neutrophils in men and in women. Furthermore, sex-specific associations were found with frailer men, but not women, showing higher numbers of non-classical monocytes and transitional B cells. In addition, frailer women, but not men, showed higher numbers of classical monocytes and lower numbers of NK-T cells. Interestingly, we did not detect an association between frailty and late differentiated memory T-cell subsets. Although the accuracy of the predictions of frailty from information on the immune subpopulations was low (10.7% explained variance in men and 10.5% in women), the prediction model confirmed our findings in the association study. Conclusions: We here report on observed associations of frailty with elevated neutrophil numbers, but not with late stage memory T cell subsets. Furthermore, in-depth immune cellular profiling revealed sex specific associations of frailty with several immune subpopulations. We hope that our study will prompt further investigation into the immune mechanisms associated with the development of frailty in men and women.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi121-vi121
Author(s):  
Michael Zhang ◽  
Stephanie Hilz ◽  
Michael Martin ◽  
Chibo Hong ◽  
Yao Yu ◽  
...  

Abstract The design and evaluation of immunotherapies in IDH-mutant lower grade gliomas (LGG) is hindered by a poor understanding of the LGG T-cell repertoire. We present data on the temporal evolution, intratumoral spatial distribution, and prognostic value of the T-cell repertoire in IDH-mutant LGGs. We performed immunogenomic profiling using T-cell receptor beta-chain sequencing of 163 glioma and peripheral blood samples from 33 immunotherapy-naive glioma patients (22 astrocytomas, 11 oligodendrogliomas). T-cell repertoire evolution was analyzed in a subset of 26 patients (69 samples) with matched primary (WHO grade II) and recurrent (WHO grade II-IV) glioma samples. T-cell repertoire diversity was defined as the number of unique T-cell clonotypes by V-gene, J-gene, and CDR3 nucleotide sequences. Malignant transformed (Grade III or IV) recurrent gliomas demonstrated increased T-cell repertoire diversity compared to their patient-matched primary tumors (p=0.0023), but grade II recurrences did not show the same increased diversity (p=0.26). This increase in T-cell repertoire diversity was greater in patients who underwent transformation in the context of TMZ-associated hypermutation compared to spontaneously transformed counterparts (p=0.035). In grade II primary astrocytomas (n=17), T-cell repertoire diversity above the median (186 unique T-cell clonotypes per sample) was associated with worse transformation-free (HR=4.2, p=0.045) and overall survival (HR=6.4, p=0.025). Next, we evaluated intratumoral immune heterogeneity in 7 patients by sampling from up to 10 distinct and maximally-separated intratumoral sites per LGG (64 samples). Eighty-two to 96% of unique clonotypes within a given tumor were present only within a single sampled site. Despite this heterogeneity, six LGG patients harbored T-cell clonotypes present tumor-wide across all sampled sites within a given tumor. Ten of 24 (42%) tumor-wide T-cell clonotypes were enriched in the glioma compared to matched peripheral blood, suggesting glioma-specificity. Taken together, T-cell receptor profiling in LGGs may have utility both as a prognostic biomarker and to identify glioma-specific T-cells.


2021 ◽  
Vol 37 (2) ◽  
Author(s):  
Mehwish Zehravi ◽  
MOHSIN WAHID ◽  
Junaid Ashraf

Objective: To derive Duchenne muscular dystrophy patient specific induced pluripotent stem cells (iPSCs) from CD3+T cells of DMD patients using episomal reprogramming and characterization of these DMD-iPSCs using immunofluorescence to confirm their pluripotent state. Methods: DMD patients were selected based upon their clinical history and examination. Peripheral blood mononuclear cells were isolated from peripheral blood of DMD patients (n=3) by density gradient centrifugation and were used to generate DMD patient specific T cells (DMD-T cells) using rhIL-2, plate bound anti CD3 antibody and T cell specific media along with specific culture conditions that promote T cell expansion. CD3+ T cells were characterized by flow cytometry and reprogrammed using episomal plasmid to generate DMD-iPSCs. These DMD-iPSCs were characterized using immunofluorescence. The study was carried out at Dow Research Institute of Biotechnology and Biomedical Sciences during August 2017- July 2018 for a period of approximately 12 months. Results: The peripheral blood mononuclear cells (PBMNC) derived T cells appeared as suspended cell clumps morphologically were positive for the expression of CD3 and negative for CD31. The DMD patient specific iPSCs appeared as round, compact and flat colonies with well-defined edges morphologically and were positive for the expression of pluripotency markers OCT4, SSEA-4 and TRA-1-81 on immunofluorescence. Conclusion: CD3+ T cell derived DMD-iPSCs were obtained under feeder free and xeno-free culture conditions using episomal reprogramming. doi: https://doi.org/10.12669/pjms.37.2.3388 How to cite this:Zehravi M, Wahid M, Ashraf J. Episomal reprogramming of Duchenne muscular dystrophy patients derived CD3+ T cells towards induced pluripotent stem cells. Pak J Med Sci. 2021;37(2):---------. doi: https://doi.org/10.12669/pjms.37.2.3388 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander J. Dwyer ◽  
Jacob M. Ritz ◽  
Jason S. Mitchell ◽  
Tijana Martinov ◽  
Mohannad Alkhatib ◽  
...  

AbstractThe notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A637-A637
Author(s):  
Manoj Chelvanambi ◽  
Ronald Fecek ◽  
Jennifer Taylor ◽  
Walter Storkus

BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Hence, enhancement of TIL prevalence is a preferred clinical endpoint, one that may be achieved via administration of agents that normalize the tumor vasculature (VN) leading to improved immune cell recruitment and/or that induce the development of local tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose STING agonist ADU S-100 (5 μg/mouse) was delivered intratumorally to established s.c. B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation under an IACUC-approved protocol. Treated and control, untreated tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via qPCR, with corollary immune cell composition changes determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 μg/mL ADU S-100 (vs PBS control) and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For TCRβ-CDR3 analyses, CDR3 was sequenced from gDNA isolated from enzymatically digested tumors and splenocytes.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of angiostatic factors including Tnfsf15 (Vegi), Cxcl10 and Angpt1, and TLS inducing factors including Ccl19, Ccl21, Lta, Ltb and Tnfsf14 (Light). Therapeutic responses from intratumoral STING activation were characterized by increased vascular normalization (VN), enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neo-genesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ex vivo ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), IL-36, inflammatory chemokines and type I interferons. TLS formation was associated with the development of a therapeutic TIL TCR repertoire enriched in T cell clonotypes uniquely detected within the tumor but not the peripheral circulation in support or local T cell cross-priming within the TME.ConclusionsOur data support the premise that i.t. delivery of STING agonist promotes a pro-inflammatory TME in support of VN and TLS formation, leading to the local expansion of unique TIL repertoire in association with superior anti-melanoma efficacy.


Sign in / Sign up

Export Citation Format

Share Document