scholarly journals Dynamics of Southern rice black-streaked dwarf virus in Rice and Implication for Virus Acquisition

2013 ◽  
Vol 103 (5) ◽  
pp. 509-512 ◽  
Author(s):  
Keiichiro Matsukura ◽  
Tomomi Towata ◽  
Junichi Sakai ◽  
Masatoshi Onuki ◽  
Mitsuru Okuda ◽  
...  

A novel viral disease of rice caused by Southern rice black-streaked dwarf virus (SRBSDV) has spread throughout East and Southeast Asia since the mid-2000s. Outbreaks of this viral disease occur yearly in southern parts of Japan concurrently with overseas migration of the planthopper vector Sogatella furcifera from southern China during the rainy season (from late June to early July). We examined the dynamics (changes in titer and localization) of SRBSDV on rice using reverse-transcription real-time polymerase chain reaction and determined the relationship between virus titer in plants and virus acquisition by S. furcifera. Under a constant temperature of 27°C, a substantial increase of SRBSDV titer in the leaf sheath together with typical symptoms (stunted growth and twisting of leaf tips) was observed at 20 days after the end of a 7-day exposure of viruliferous S. furcifera. Approximately 40% of S. furcifera acquired SRBSDV through feeding for 5 days on rice plants that were infected following exposure to viruliferous vectors for 10 to 15 days. These results suggest that rice infected by S. furcifera can be a source of SRBSDV before the next generation of S. furcifera emerges.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1501
Author(s):  
Shunkang Zhou ◽  
Yaling Zhao ◽  
Zhenyi Liang ◽  
Ruifeng Wu ◽  
Biao Chen ◽  
...  

Southern rice black-streaked dwarf virus (SRBSDV), a Fijivirus in the Reoviridae family, is transmitted by the white-backed planthopper (Sogatella furcifera, WBPH), a long-distance migratory insect, and presents a serious threat to rice production in Asia. It was first discovered in China’s Guangdong Province in 2001 and has been endemic in the south of China and north of Vietnam for two decades, with serious outbreaks in 2009, 2010, and 2017. In this study, we evaluated the resistance of 10 dominant rice varieties from southern China, where the virus overwinters and accumulates as a source of early spring reinfection, against this virus by artificial inoculation. The results showed that in all tested varieties there was no immune resistance, but there were differences in the infection rate, with incidence rates from 21% to 90.7%, and in symptom severity, with plant weight loss from 66.71% to 91.20% and height loss from 34.1% to 65.06%. Additionally, and valuably, the virus titer and the insect vector virus acquisition potency from diseased plants were significantly different among the varieties: an over sixfold difference was determined between resistant and susceptible varieties, and there was a positive correlation between virus accumulation and insect vector virus acquisition. The results can provide a basis for the selection of rice varieties in southern China to reduce the damage of SRBSDV in this area and to minimize the reinfection source and epidemics of the virus in other rice-growing areas.


Plant Disease ◽  
2016 ◽  
Vol 100 (4) ◽  
pp. 784-790 ◽  
Author(s):  
Yong Chen ◽  
Chengcong Lu ◽  
Manman Li ◽  
Wei Wu ◽  
Guohui Zhou ◽  
...  

Rice gall dwarf virus (RGDV), a plant reovirus that threatens rice production in Southeast Asia and Southern China, is transmitted by the leafhopper vector Recilia dorsalis in a persistent-propagative manner. To assess the direct effects of RGDV on R. dorsalis, we established an infected leafhopper population from eggs laid by viruliferous females using the water-soaked filter paper culture method. Life history parameters indicated that the virus was harmful to its vector in terms of all biotic indices, including reduced survival rate, emergence rate, fecundity, and longevity of adults, compared with a nonviruliferous control population. Those findings were supported by systematic monitoring of viruliferous rates of R. dorsalis in different overwintering generations. To better elucidate the adverse effects of RGDV on its vector, we measured fecundity at the molecular level using quantitative reverse-transcription polymerase chain reaction and Western blot assays, which revealed differential expression of vitellogenin (Vg) in viruliferous versus nonviruliferous adult females. We infer that RGDV reduced levels of Vg transcript and protein product, resulting in the lower fecundity of its vector. Overall, this study demonstrates how RGDV exerts an adverse effect on R. dorsalis, which hinders the expansion of viruliferous populations of the insect.


2020 ◽  
Author(s):  
Xiaonv Duan ◽  
Yingcheng Qin ◽  
Yuan Peng ◽  
YongYu Rui

Abstract Background: The identified rate of carbapenem-resistant Enterobacteriaceae (CRE) have been increasingly in the clinical infections. Here, a study of analysing the relationship of clinical infectious CRE and fecal carried CRE was performed.Methods: Clinical CRE and fecal CRE were collected from hosiptal in China. Polymerase chain reaction (PCR)-based amplification and sequencing were performed to analyse the carriage of drug-resistant genes and mobile genetic elements (MGEs), Enterobacterial Repetitive Intergenic Consensus (ERIC) technology and whole genome sequencing (WGS) were used to analysis the characteristic of genetic structure of CRE isolates.Results: 99 clinical CRE and 30 fecal CRE were collected, respectively. The top three strains present in the highest proportions were K. pneumoniae (86; 66.67%), E. cloacae (22; 17.05%), and E. coli (11; 8.53%). Most of the isolates were susceptible to colistin (98.45%) and tigecycline (98.45%). blaKPC−2 (96.03%) was the dominant carbapenemase gene in clinical CRE and fecal CRE, followed by blaNDM (52.7%); co-existence of the blaKPC−2 and blaNDM genes was detected in 63 (50.00%) strains. One K. pneumoniae isolate co-producing NDM-5 and mcr-1, and one E. coli isolate co-producing KPC-2, IMP-4, and mcr-1 were detected. Two novel gene cassettes of intI2 were dectected. ERIC genotyping and genomic analysis revealed that K. pneumoniae isolated from clinical infections and fecal survey samples were same clone.Conclusions: This is the first report of comparing the molecular characteristics of CRE isolated from clinical infection and fecal survey samples. we found that fecal carried CRE were closely related to CRE which caused infections.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1063-1069 ◽  
Author(s):  
Anh Ta Hoang ◽  
Heng-mu Zhang ◽  
Jian Yang ◽  
Jian-ping Chen ◽  
Eugénie Hébrard ◽  
...  

A novel dwarf and twisting syndrome first observed on rice in Nghe An Province, Vietnam, in 2009 has spread rapidly to the other 19 provinces of North and Central Vietnam. Infected rice plants showed stunting, darkening of leaves, twisting of leaf tips, and splitting of leaf margins. At a later stage, white waxy enations that eventually turned black were observed on the underside of leaf blades, leaf sheaths, and culms. The disease also infected maize after rice was harvested. Infected maize plants were stunted and dark green with small enations along the minor veins on the back of leaves. The disease agent has now been identified as Southern rice black-streaked dwarf virus (SRBSDV) recently reported from Southern China. Typical fijivirus viroplasms containing crystalline arrayed spherical virions approximately 70 to 75 nm in diameter were observed under the electron microscope in ultrathin sections of infected rice leaves. The virus was transmitted to rice and maize seedlings by the white-backed planthopper (Sogatella furcimera). A one-step reverse transcription-polymerase chain reaction (RT-PCR) protocol was used to confirm the presence of SRBSDV in 477 samples of rice or maize from 29 provinces among 5 agroecological regions in North and Central Vietnam. Rice black-streaked dwarf virus was not detected in these samples. Partial sequences of RNA segments 4 and 10 from several isolates showed very low genetic divergences between isolates from Vietnam and China, suggesting a common origin, and phylogenetic analysis confirmed the placement of SRBSDV as a distinct virus within subgroup 2 of the genus Fijivirus.


2018 ◽  
Vol 13 (6) ◽  
pp. 199 ◽  
Author(s):  
Siti Shofiya Nasution ◽  
Diny Dinarti ◽  
Sri Hendrastuti Hidayat

Infection of Onion yellow dwarf virus (OYDV) are reported causing problems in garlic production. Planting virus-free bulbs might help reduce viral disease incidence in the field. This research was aimed to develop method for eliminating OYDV from garlic bulbs using combination of electrotherapy (0, 5, 10, 15, and 20 mA each for 10 minutes) and thermotherapy (23, 28, 33, 38°C each for 4 weeks). Two garlic cultivars, i.e. Sangga Sembalun and Lumbu Hijau were used as seed bulbs for OYDV elimination tests. Virus infection was confirmed using transcription-polymerase chain reaction (RT-PCR).  The result showed that thermotherapy at 33 °Cwas the best method to eliminate OYDV in garlic although the efficiency was not the same for all cultivars. The efficiency reached up to 60% for cv. Lumbu Hijau, whereas for cv. Sangga Sembalun only reached up to 40%. Electrotherapy alone or in combination with thermotherapy were not able to produce OYDV-free plantlets.


Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 92-98 ◽  
Author(s):  
William M. Wintermantel ◽  
Robert L. Gilbertson ◽  
James D. McCreight ◽  
Eric T. Natwick

Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, family Closteroviridae) was identified in the melon (Cucumis melo) production regions of the desert southwestern United States in fall 2006. It is now well established in the region, where it is transmitted efficiently by the sweet potato whitefly, Bemisia tabaci biotype B (MEAM1). In order to evaluate the spread and establishment of the virus, nearly all spring and fall cucurbit fields planted in the Imperial Valley of California from 2007 to 2009 were surveyed and representative plants were tested for CYSDV infection. Incidence of CYSDV in spring melon fields was initially low and limited to a small number of fields in 2007 but increased to 63% of fields by spring 2009. Virus incidence in fall melon fields was 100% in each year. These results suggested that the virus had become established in native vegetation, weeds, and other crop species, and represented an increasing threat to melon production in the southwestern United States. Therefore, a select set of weed and crop species which grow or are cultivated in the Imperial Valley were evaluated as CYSDV reservoir hosts. For each species, we determined the capacity of CYSDV to accumulate, the relationship between virus titer in these source plants and transmission by whiteflies, as well as subsequent accumulation in inoculated cucurbit plants. Among these hosts, there was considerable variation in virus accumulation and transmission rates. Cucurbit hosts had the highest CYSDV titers, were efficient sources for virus acquisition, and showed a positive correlation between titer in source plants and transmission. Noncucurbit hosts had significantly lower CYSDV titers and varied in their capacity to serve as sources for transmission. CYSDV titers in some noncucurbit source plants, specifically common bean (Phaseolus vulgaris) and shepherd’s purse (Capsella bursa-pastoris), were not positively correlated with transmission, demonstrating that additional environmental, physical, or biochemical factors were involved. These results demonstrate that multiple factors influence the efficiency with which a host plant species will be a reservoir for vector transmission of virus to crops.


2019 ◽  
Vol 16 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Qishuai Liu ◽  
Li Wang ◽  
Guizhen Yan ◽  
Weifa Zhang ◽  
Zhigang Huan ◽  
...  

Background: MicroRNAs (miRNA) are known to play a key role in the etiology and treatment of epilepsy through controlling the expression of gene. However, miR-125a-5p in the epilepsy is little known. Epilepsy in rat models was induced by Pentylenetetrazol (PTZ) and miR- 125a-5p profiles in the hippocampus were investigated in our experiment. Also, the relationship between miR-125a-5p and calmodulin-dependent protein kinase IV (CAMK4) was identified and the related mechanism was also illustrated. Methods: The miR-125a-5p mRNA expression levels were evaluated by quantitative real time polymerase chain reaction (qRT-PCR). Western Blot (WB) was used to analyze the CAMK4 protein expression levels. Seizure score, latency and duration were determined based on a Racine scale. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the inflammatory factor expression. The relationship between miR-125a-5p and CAMK4 was detected through dual luciferase assay. Results: Downregulation of miR-125a-5p was observed in the hippocampus of PTZ-induced epilepsy rats. The overexpression of miR-125a-5p attenuated seizure and decreased inflammatory factor level in the hippocampus of PTZ-induced rats. The miR-125a-5p alleviated epileptic seizure and inflammation in PTZ-induced rats by suppressing its target gene, CAMK4. Conclusion: miR-125a-5p may represent a novel therapeutic treatment for PTZ-induced epilepsy by preventing the activation of CAMK4.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.


2020 ◽  
Vol 15 (1) ◽  
pp. 1013-1023
Author(s):  
Lina Xing ◽  
Jinhai Ren ◽  
Xiaonan Guo ◽  
Shukai Qiao ◽  
Tian Tian

AbstractPrevious research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.


Sign in / Sign up

Export Citation Format

Share Document