scholarly journals Cancer cells optimize elasticity for efficient migration

2020 ◽  
Vol 7 (10) ◽  
pp. 200747
Author(s):  
Ahmad Sohrabi Kashani ◽  
Muthukumaran Packirisamy

Cancer progression is associated with alternations in the cytoskeletal architecture of cells and, consequently, their mechanical properties such as stiffness. Changing the mechanics of cells enables cancer cells to migrate and invade to distant organ sites. This process, metastasis, is the main reason for cancer-related mortality. Cell migration is an essential step towards increasing the invasive potential of cells. Although many studies have shown that the migratory speed and the invasion of cells can be inversely correlated to the stiffness of cells, some other investigations indicate opposing results. In the current work, based on the strain energy stored in cells due to the contractile forces, we defined an energy-dependent term, migratory index, to approximate how changes in the mechanical properties of cells influence cell migration required for cancer progression. Cell migration involves both cell deformation and force transmission within cells. The effects of these two parameters can be represented equally by the migratory index. Our mechanical modelling and computational study show that cells depending on their shape, size and other physical parameters have a maximum migratory index taking place at a specific range of cell bulk elasticity, indicating the most favourable conditions for invasive mobility. This approximate model could be used to explain why the stiffness of cells varies during cancer progression. We believe that the stiffness of cancer or malignant cells depending on the stiffness of their normal or non-malignant counterparts is either decreased or increased to reach the critical condition in which the mobility potential of cells is approximated to be maximum.

2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


Author(s):  
Dornaz Milani ◽  
Siamak Khoramymehr ◽  
Behrouz Vasaghi-Gharamaleki

Background: In most communities, the risk of developing breast cancer is increasing. By affecting the cyclooxygenase 1 and 2 (COX-1 and COX-2) enzymes and actin filaments, acetylsalicylic acid (Aspirin) has been shown to reduce the risk of breast cancer and prevent cell migration in both laboratory and clinical studies. Methods: The purpose of this study is to determine the mechanical properties of normal and cancerous breast tissue cells, as well as the short-term effect of aspirin on cancer cells. To this end, the mechanical properties and deformation of three cell types were investigated: healthy MCF-10 breast cells, MCF-7 breast cancer cells, and MCF-7 breast cancer cells treated with a 5 µM aspirin solution. Atomic Force Microscopy (AFM) was used to determine the mechanical properties of the cells. Cell deformation was analyzed in all groups, and Young's modulus was calculated using the Hertz model. Result: According to the obtained data, cancer cells deformed at a rate half that of healthy cells. Nonetheless, when aspirin was used, cancer cells deformed similarly to healthy cells. Additionally, healthy cells' Young's modulus was calculated to be approximately three times that of cancer cells, which was placed closer to that of healthy cells by adding aspirin to Young's modulus. Conclusion: Cell strength appears to have increased due to aspirin's intervention on actin filaments and cytoskeletons, and the mechanical properties of breast cancer cells have become more similar to those of normal cells. The likelihood of cell migration and metastasis decreases as cell strength increases.


MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Andrea Speciale ◽  
Paola Monti ◽  
Gilberto Fronza ◽  
Alberto Izzotti ◽  
Paola Menichini

: The chemoresistance of cancer cells is a multifactorial mechanism, in which de-regulated apoptotic pathways, the oxidative response and cancer cell migration play a crucial role. A key player in the control of such pathways is the tumor suppressor gene TP53, also defined as the “guardian of the genome”, encoding the P53 tetrameric transcription factor. P53, following cell injuries, can activate the transcription of several target genes crucial for the induction of apoptosis, cell cycle arrest, modulation of senescence, DNA repair, autophagy and metabolism. Importantly, TP53 gene is mutated in nearly 50% of human cancers, implying an altered expression of target genes in cancer cells. The presence of TP53 mutations can also affect the expression of several small non-coding RNAs (microRNAs or miRNAs), involved in the same regulation of the apoptotic signaling, cell cycle regulation and cell migration. In mutant P53 expressing tumors, some miRNAs resulted to be down-regulated, while others appeared to be up-regulated as demonstrated by in vitro and in vivo studies. Thus, the expression level of specific P53 responsive miRNAs could be used as a marker of cancer progression and therapy performance. In the present review, we will summarize the role of P53-related miRNAs and their clinical relevance in monitoring therapy outcome and progression of cancers with mutant P53.


2017 ◽  
Vol 45 (1) ◽  
pp. 229-236 ◽  
Author(s):  
Begum Erdogan ◽  
Donna J. Webb

Cancer-associated fibroblasts (CAFs) are major components of the surrounding stroma of carcinomas that emerge in the tumor microenvironment as a result of signals derived from the cancer cells. Biochemical cross-talk between cancer cells and CAFs as well as mechanical remodeling of the stromal extracellular matrix (ECM) by CAFs are important contributors to tumor cell migration and invasion, which are critical for cancer progression from a primary tumor to metastatic disease. In this review, we discuss key paracrine signaling pathways between CAFs and cancer cells that promote cancer cell migration and invasion. In addition, we discuss physical changes that CAFs exert on the stromal ECM to facilitate migration and invasion of cancer cells.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4390
Author(s):  
Liya Kondratyeva ◽  
Igor Chernov ◽  
Eugene Kopantzev ◽  
Dmitry Didych ◽  
Alexey Kuzmich ◽  
...  

Intercellular interactions involving adhesion factors are key operators in cancer progression. In particular, these factors are responsible for facilitating cell migration and metastasis. Strengthening of adhesion between tumor cells and surrounding cells or extracellular matrix (ECM), may provide a way to inhibit tumor cell migration. Recently, we demonstrated that PDX1 ectopic expression results in the reduction of pancreatic cancer line PANC-1 cell motility in vitro and in vivo, and we now provide experimental data confirming the hypothesis that suppression of migration may be related to the effect of PDX1 on cell adhesion. Cell migration analyses demonstrated decreased motility of pancreatic Colo357 and PANC-1 cell lines expressing PDX1. We observed decreased expression levels of genes associated with promoting cell migration and increased expression of genes negatively affecting cell motility. Expression of the EMT regulator genes was only mildly induced in cells expressing PDX1 during the simulation of the epithelial-mesenchymal transition (EMT) by the addition of TGFβ1 to the medium. PDX1-expressing cancer cell lines showed increased cell adhesion to collagen type I, fibronectin, and poly-lysine. We conclude that ectopic expression of PDX1 reduces the migration potential of cancer cells, by increasing the adhesive properties of cells and reducing the sensitivity to TGFβ1-induced EMT.


2018 ◽  
Vol 132 (18) ◽  
pp. 2029-2044 ◽  
Author(s):  
Shayna Sharma ◽  
Mona Alharbi ◽  
Miharu Kobayashi ◽  
Andrew Lai ◽  
Dominic Guanzon ◽  
...  

Ovarian cancer has resulted in over 140 000 deaths reported annually worldwide. This is often attributed to cellular changes in the microenvironment, including increased migration of mesenchymal stem cells (MSCs) and endothelial cells (ECs) to facilitate metastasis. Recently, the ability of exosomes to communicate signals between cells (and promote cancer progression) has been established. In the present study, we explored the effect of exosomes on cells present in the tumour microenvironment. Exosomes were isolated from ovarian cancer cells with different invasive capacity (high = SKOV-3 and low = OVCAR-3) by differential and buoyant density centrifugation and characterised using nanoparticle tracking analysis (NTA), Western blot, and EM. Exosome secretion was positively correlated with invasiveness of releasing cells. Proteomic analyses identified common and unique proteins between exosomes from SKOV-3 and OVCAR-3 with gene ontology analyses revealing that these exosomes are involved in the regulation of cell migration. Since the tumour microenvironment contains multiple cell types, including MSCs and ECs, we examined the effect of these exosomes on MSC and EC migration. Exosomes promoted MSC and EC migration in a time- and concentration-dependent manner. The effect of exosomes isolated from SKOV-3 on cell migration was significantly higher compared with exosomes from OVCAR-3. Thus, we suggest that exosomes from ovarian cancer cells contain a specific set of proteins that are representative of its cell of origin and the invasive capacity.


2021 ◽  
Vol 22 (4) ◽  
pp. 2037
Author(s):  
Bo-Yuan Hsiao ◽  
Chia-Hsin Chen ◽  
Ho-Yi Chi ◽  
Pei-Ru Yen ◽  
Ying-Zhen Yu ◽  
...  

Regulation of cellular actin dynamics is pivotal in driving cell motility. During cancer development, cells migrate to invade and spread; therefore, dysregulation of actin regulators is often associated with cancer progression. Here we report the role of ABRACL, a human homolog of the Dictyostelium actin regulator Costars, in migration and tumorigenic growth of cancer cells. We found a correlation between ABRACL expression and the migratory ability of cancer cells. Cell staining revealed the colocalization of ABRACL and F-actin signals at the leading edge of migrating cells. Analysis of the relative F-/G-actin contents in cells lacking or overexpressing ABRACL suggested that ABRACL promotes cellular actin distribution to the polymerized fraction. Physical interaction between ABRACL and cofilin was supported by immunofluorescence staining and proximity ligation. Additionally, ABRACL hindered cofilin-simulated pyrene F-actin fluorescence decay in vitro, indicating a functional interplay. Lastly, analysis on a colorectal cancer cohort demonstrated that high ABRACL expression was associated with distant metastasis, and further exploration showed that depletion of ABRACL expression in colon cancer cells resulted in reduced cell proliferation and tumorigenic growth. Together, results suggest that ABRACL modulates actin dynamics through its interaction with cofilin and thereby regulates cancer cell migration and participates in cancer pathogenesis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maia Al-Masri ◽  
Karina Paliotti ◽  
Raymond Tran ◽  
Ruba Halaoui ◽  
Virginie Lelarge ◽  
...  

AbstractMetabolic plasticity enables cancer cells to switch between glycolysis and oxidative phosphorylation to adapt to changing conditions during cancer progression, whereas metabolic dependencies limit plasticity. To understand a role for the architectural environment in these processes we examined metabolic dependencies of cancer cells cultured in flat (2D) and organotypic (3D) environments. Here we show that cancer cells in flat cultures exist in a high energy state (oxidative phosphorylation), are glycolytic, and depend on glucose and glutamine for growth. In contrast, cells in organotypic culture exhibit lower energy and glycolysis, with extensive metabolic plasticity to maintain growth during glucose or amino acid deprivation. Expression of KRASG12V in organotypic cells drives glucose dependence, however cells retain metabolic plasticity to glutamine deprivation. Finally, our data reveal that mechanical properties control metabolic plasticity, which correlates with canonical Wnt signaling. In summary, our work highlights that the architectural and mechanical properties influence cells to permit or restrict metabolic plasticity.


Author(s):  
Alessandra Toti ◽  
Alice Santi ◽  
Elisa Pardella ◽  
Ilaria Nesi ◽  
Richard Tomasini ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) are one of the main components of the stromal compartment in the tumor microenvironment (TME) and the crosstalk between CAFs and cancer cells is essential for tumor progression and aggressiveness. Cancer cells mediate an activation process, converting normal fibroblasts into CAFs, that are characterized by modified expression of many proteins and increased production and release of microvesicles (MVs), extracellular vesicles generated by outwards budding from the cell membrane. Recent evidence underlined that the uptake of CAF-derived MVs changes the overall protein content of tumor cells. In this paper, we demonstrate that tumor activated fibroblasts overexpress Galectin-1 (Gal-1) and consequently release MVs containing increased levels of this protein. The uptake of Gal-1 enriched MVs by tumor cells leads to the upregulation of its intracellular concentration, that strongly affects cancer cell migration, while neither proliferation nor adhesion are altered. Accordingly, tumor cells co-cultured with fibroblasts silenced for Gal-1 have a reduced migratory ability. The present work reveals the key role of an exogenous protein, Gal-1, derived from activated fibroblasts, in cancer progression, and contributes to clarify the importance of MVs-mediated protein trafficking in regulating tumor-stroma crosstalk.


Sign in / Sign up

Export Citation Format

Share Document