scholarly journals Agroecological zones and the assessment of crop production potential

1997 ◽  
Vol 352 (1356) ◽  
pp. 907-916 ◽  
Author(s):  
M. V. K. Sivakumar ◽  
C. Valentin

The rapidly growing world population puts considerable pressure on the scarce natural resources, and there is an urgent need to develop more efficient and sustainable agricultural production systems to feed the growing population. This should be based on an initial assessment of the physical and biological potential of natural resources, which can vary greatly. The agroecological zonation (AEZ) approach presents a useful preliminary evaluation of this potential, and ensures that representation is maintained at an appropriate biogeographic scale for regional sustainable development planning. The principal AEZs of the world, as described by the Technical Advisory Committee of the Consultative Group on International Agricultural Research, are presented along with their extent and characteristics. Net primary productivity of terrestrial vegetation can be assessed from weather data, and it varies from 1 t dry matter ha −1 yr −1 in high latitude zones and dry regions to 29 t ha −1 yr −1 in tropical wet regions, depending on the climatic conditions. To assess the crop production potential, length of the growing period zones, a concept introduced by the UN Food and Agriculture Organization, is very useful as it describes an area within which rainfall and temperature conditions are suitable for crop growth for a given number of days in the year. These data, combined with the information on soils and known requirements of different food crops, can be used to assess the potential crop productivity. Some perspectives on AEZs and crop production potential are presented by describing the manner in which production potential can be integrated with present constraints. Efforts to intensify production should place emphasis on methods appropriate to the socio-economic conditions in a given AEZ, and on promotion of conservation-effective and sustainable production systems to meet the food, fodder and fuel needs for the future.

2016 ◽  
Vol 71 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Karl Schedle

SummaryIn the context of mismanagement of natural resources going with an increasing consumption of protein from animal origin through the world population, one major challenge for the future in animal nutrition is the improvement of its efficiency and hence sustainability. Up to now, a broad range of methods like feed additives or technological treatments have been available to improve the efficiency or the production of pig-derived and poultry-derived food and hence the sustainability in pig and poultry nutrition. Nevertheless, the exact knowledge of the mode of action of these tools is a prerequisite for their successful application. Furthermore, information concerning their impact on the nutrient availability of the different feedstuffs is of great importance, in order to formulate diets that cover the animals’ requirements. Diets covering the animals’ performance level ovoid undersupplies, which can lead to health problems on the on hand, on the other hand the emissions of nitrogen are kept as low as possible.As a result, the consumption of natural resources like grains can be considerably reduced and the substitution of regional by-products from the feed and food processing industry like wheat bran, dried distillers grains with solubles or rapeseed meal can be dramatically enhanced in diets for monogastric animals, thus contributing to more sustainable livestock production. By improving the efficiency of the production of animal-derived food, the term “sustainable’’ remains highly significant. Increasing efficiency plays an important role in ensuring that the resources required for pig and poultry nutrition are foreseeably available. Currently, there is a combination of different tools like feed additives or technological feed treatments the most promising way of improving sustainability in pig and poultry production systems.


2008 ◽  
Vol 48 (3) ◽  
pp. 326 ◽  
Author(s):  
C. J. Birch ◽  
K. Stephen ◽  
G. McLean ◽  
A. Doherty ◽  
G. L. Hammer ◽  
...  

Maize may assume a more significant role in grain crop production systems in north-east Australia if the probability of producing low yields associated with given amounts of available water can be reduced. Growing hybrids with very early maturity provides a possible way to achieve this. Simulation studies of dryland maize production in areas of highly variable rainfall in north-east Australia were undertaken using long-term weather data input to the APSIM model configured for quick to medium maturity maize. The studies focussed on sowing time options, population density, cultivars, and water availability at sowing. Simulation outputs included predicted mean and median yield, measures of yield variability, and the probability of producing low to very low yield (<2 t/ha). The study showed that optimum sowing date varied with location, and that low populations gave more reliable production, despite some potential yield losses in favourable years. The results of the simulation study provide estimates of yield and thus economic viability of maize production that are interpreted in terms of seasonal variability. They indicate that maize is a viable dryland cropping option provided that cultivar, sowing time and starting water conditions are optimised. Non-optimal conditions of water supply at sowing should be avoided, as greater variability in yield and reduced viability are predicted.


2010 ◽  
Vol 149 (S1) ◽  
pp. 123-131 ◽  
Author(s):  
W. J. DAVIES ◽  
J. ZHANG ◽  
J. YANG ◽  
I. C. DODD

SUMMARYGlobally, agriculture accounts for 0·80–0·90 of all freshwater used by humans and, in many crop production systems, this water use is unsustainable. The current paper focuses on the potential exploitation of novel drought stress biology in both crop improvement programmes and via changed crop management practices. The aim is to deliver ‘more crop per drop’. In order to respond to the challenge of feeding a world population of seven billion and growing, it is concluded that an interdisciplinary approach is needed involving new genetic opportunities and plant breeding. It is also shown how crop management can exploit the drought stress physiology of plants to deliver improved water productivity without sacrificing crop yield.


2021 ◽  
Vol 911 (1) ◽  
pp. 011001

The 2nd International Conference on Sustainable Cereals and Crops Production Systems in the Tropics (ICFST) was held on 23-24 September 2021 in Harper Hotel Makassar, Indonesia. The Conference was organized by Indonesian Agency for Agricultural Research and Development (IAARD)-Ministry of Agriculture of Indonesia, collaborated with International Maize and Wheat Improvement Center (CIMMYT) and Ministry of Research, Technology and Higher Education of Indonesia. The theme of the conference is “Strengthening Agricultural Resources Management to Support Food Security and Industry 4.0” with the sub themes of Breeding and Biotechnology, Crop Production Systems, Pest and Disease Management, Post Harvest, Socio-Economy and Community Development. The conference was conducted in two days offline/on site and virtual scientific sessions. Due to the pandemic reason, offline/on site meeting was limited to a maximum of 100 participants and the remaining 900 participants joined via virtual zoom meeting. The conference facilitate the research community focusing in food crops and provide platform for scientists to meet and interact with each other to share their knowledge and their research results along with the obstacles and challenges they faced in their development, achievement as well as experiences through the presentation of papers and discussion. This international conference is also an event to establish cooperation in the development of food crops research in the future as well as enhancing the knowledge of environmental protection with the current agricultural technologies. We would like to convey our deepest gratitude to the Minister of Agriculture of Indonesia, Keynote Speakers: Dr Kevin Pixley (Director of Genetic Resources Program CIMMYT & the CGIAR Research Program), Prof. Keerti S. Rathore (Texas A&M University, USA), Dr. Juan Landivar Bowles (Texas Agrilive-USA), Prof Bunyamin Tar’an (University of Saskatchewan Canada), Dr. Yu Shin Nai (Chung Sing University-Taiwan), Dr. Naori Miyazawa (Nagoya University), sponsors, organizing committee and also to all participants. We also would like to express our deepest gratitude to the Indonesian Agency for Agricultural Research and Development (IAARD) conducted such conference. We are looking forward to the 3rd ICFST that will be held on September 2023 in Bali Island. We expect that these future ICFST conference will be as stimulating as this most recent one was, as indicated by the contributions presented in this proceedings volume. Makassar, 23-24 September 2021 IAARD Indonesia List of Committees, conference photograph are available in this Pdf.


2020 ◽  
Vol 13 (5) ◽  
pp. 818-826
Author(s):  
Ranjan Kumar Panda ◽  
A. Sai Sabitha ◽  
Vikas Deep

Sustainability is defined as the practice of protecting natural resources for future use without harming the nature. Sustainable development includes the environmental, social, political, and economic issues faced by human being for existence. Water is the most vital resource for living being on this earth. The natural resources are being exploited with the increase in world population and shortfall of these resources may threaten humanity in the future. Water sustainability is a part of environmental sustainability. The water crisis is increasing gradually in many places of the world due to agricultural and industrial usage and rapid urbanization. Data mining tools and techniques provide a powerful methodology to understand water sustainability issues using rich environmental data and also helps in building models for possible optimization and reengineering. In this research work, a review on usage of supervised or unsupervised learning algorithms in water sustainability issues like water quality assessment, waste water collection system and water consumption is presented. Advanced technologies have also helped to resolve major water sustainability issues. Some major data mining optimization algorithms have been compared which are used in piped water distribution networks.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


2020 ◽  
Vol 41 (2_suppl) ◽  
pp. 87S-103S
Author(s):  
Fatima Hachem ◽  
Davy Vanham ◽  
Luis A. Moreno

The rapid changes that societies have gone through in the last few decades have led to the increase in the prevalence of malnutrition in all its forms and to the degradation of natural resources and the environment. The change in the dietary habits and production systems are responsible for much of this change. Some territorial diets have been shown as potentially capable of reversing these trends by positively contributing to the health of people and the environment such as the Mediterranean Diet and the New Nordic Diet. In this paper, we review the contribution of these 2 diets to health and nutrition and to environmental, sociocultural, and economic sustainability proposing pertinent indicators. Learning from a culturally established diet and a constructed one, tradeoff could be reached to ensure better health and sustainability outcomes. Strong factors for achieving this goal lie in building on the sociocultural appropriation of diets, having the proper tools and indicators, investing in cross-sector collaboration and policy coherence, and having the necessary political support to push the agenda of sustainability forward.


Sign in / Sign up

Export Citation Format

Share Document