scholarly journals Etiological Profile and Resistance of Bacterial Isolates from Samples of Cerebrospinal Fluid in Kosovo, during the years 2014-2019

Author(s):  
Rita Qarkaxhija

Cerebrospinal fluid is a dynamic, metabolically active substance that has numerous important functions. It is considered a valuable diagnostic aid in assessing infectious inflammatory conditions, involving the brain, spinal cord, and meninges. The discovery and use of antimicrobial agents has fundamentally changed medicine from a therapeutic point of view, enabling the treatment of many diseases once considered threatening and deadly. However, after prolonged exposure of various microorganisms to these agents, the development of antimicrobial resistance has been enabled through the adaptive selection mechanism. The emergence of this resistance in the main pathogenic microorganisms is a very problematic and threatening issue in public health, making it a global problem. Resistance of various microorganisms in Kosovo, according to annual reports of CAESAR, compared to other European countries, is quite worrying. It reaches the tops of the lists for high resistance, along with other Balkan countries, such as Serbia, Montenegro, and North Macedonia. The purpose of this research was to define the etiology and level of resistance of microorganisms to antimicrobial agents, which are encountered in invasive samples of cerebrospinal fluid. This research is a retrospective, descriptive type analysis, which includes the data gathered from January 1, 2014 to May 7, 2019. We have a total of 185 bacteria isolated from 1499 isolates, conducted at the National Institute of Public Health in Kosovo. The determination of antimicrobial resistance was performed according to automated systems and the method of disk diffusion.

Neurosurgery ◽  
1985 ◽  
Vol 16 (3) ◽  
pp. 336-340 ◽  
Author(s):  
Michael Kosteljanetz

Abstract Two methods for the determination of resistance to the outflow of cerebrospinal fluid, the bolus injection technique and the constant rate steady state infusion technique, were compared. Thirty-two patients with a variety of intracranial diseases (usually communicating hydrocephalus) were studied. There was a high degree of correlation between the resistance values obtained with the two methods, but values based on the bolus injection technique were systematically and statistically significantly lower than those obtained with the constant rate infusion test. From a practical point of view. both methods were found to be applicable in a clinical setting.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sirijan Santajit ◽  
Nitaya Indrawattana

The ESKAPE pathogens (Enterococcus faecium,Staphylococcus aureus,Klebsiella pneumoniae,Acinetobacter baumannii,Pseudomonas aeruginosa, andEnterobacterspecies) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens.


2021 ◽  
Vol 8 ◽  
Author(s):  
C. V. Tuat ◽  
P. T. Hue ◽  
N. T. P. Loan ◽  
N. T. Thuy ◽  
L. T. Hue ◽  
...  

Antimicrobial use (AMU) and antimicrobial resistance (AMR) are a growing public health and economic threat in Vietnam. We conducted a pilot surveillance programme in five provinces of Vietnam, two in the south and three in the north, to identify antimicrobial resistance (AMR) in rectal swab samples from pigs and fecal samples from chickens at slaughter points during three different points in time from 2017 to 2019. Escherichia coli (E. coli) and non-typhoidal Salmonella (NTS) isolates were tested for antimicrobial susceptibility using disk diffusion assay for 19 antimicrobial agents belonging to nine antimicrobial classes and Etest for colistin (polymyxin). Almost all E. coli (99%; 1029/1042) and NTS (96%; 208/216) isolates were resistant to at least one antimicrobial agent; 94% (981/1042) of E. coli and 89% (193/216) of NTS isolates were multidrug-resistant (MDR). Higher proportions of E. coli and NTS isolated from chickens were resistant to all antimicrobial classes than those isolates from pigs. There was a significantly higher proportion of MDR NTS isolates from the southern provinces of Ho Chi Minh City and Long An (p = 0.008). Although there were increasing trends of NTS in proportion of resistance to fluoroquinolone over the three surveillance rounds, there was a significant decreasing trend of NTS in proportion of resistance to polymyxin (p = 0.002). It is important to establish an annual AMR surveillance program for livestock in Vietnam to assess the impact of interventions, observe trends and drive decision making that ultimately contributes to reducing AMR public health threat.


2018 ◽  
Vol 20 (87) ◽  
pp. 19-26 ◽  
Author(s):  
T.I. Stetsko ◽  
V.P. Muzyka ◽  
V.M. Hunchak

The resistance of microorganisms, bacterial pathogens, to antimicrobials is a global problem in both healthcare and veterinary medicine. It is believed that the main reason for the emergence and spread of antimicrobial resistance in humans is the transfer of antibiotic resistant strains of microorganisms or genes, determinants of resistance, through products of animal origin from productive animals to humans. Thus, the main way of antimicrobial resistance containment is to restrain and minimize it through the prudent use of antibiotics in veterinary medicine, especially those that are critically important for productive animals. In addition, some classes of antibacterial substances and antibiotics, that are widely used in humane medicine, are used in veterinary medicine. The need to use and preserve these important therapeutic agents is relevant from the point of view of the concept «One Health». The article provides a list of all antibacterial substances used by productive animals for their importance in veterinary medicine, developed by a special group of experts of the World Organisation for Animal Health (OIE). Any antimicrobial agent authorized for use in veterinary medicine for productive animals, in accordance with the criteria for quality, safety and efficacy as defined in Section 6.9 of the Terrestrial Animal Health Code, is considered to be important for veterinary medicine. All the antimicrobial substances used for productive animals are divided in this list on critical, very important and important for veterinary medicine. Attention was also drawn to the peculiarities of the use of critical antimicrobial agents in veterinary medicine, especially those recognized as critical in humane medicine. These include aminoglycosides, cephalosporins of the 3rd and 4th generation, fluoroquinolones, glycopeptides, macrolides, some penicillins and polymyxins. The article also describes the classification of critical antimicrobials by the European Medicines Agency (EMA) and the Panel of Experts on Antimicrobials (AMEG) of the WHO based on the risk profile for humans through the development of antimicrobial resistance after application to productive animals. Such an assessment will give veterinary practitioners an important justification when they make decisions about the clinical treatment of bacterial infections and the responsible appointment of antimicrobial therapy. This will help to reach the balance among the achievement of the effectiveness of antimicrobial therapy of productive animals, reducing of the selective pressure on the development of antibiotic resistance and ensuring of a high level of human health.


2016 ◽  
Vol 79 (2) ◽  
pp. 321-336 ◽  
Author(s):  
EDWARD P. C. LAI ◽  
ZAFAR IQBAL ◽  
TYLER J. AVIS

ABSTRACT This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.


Author(s):  
Terzulum Gwaza

The emergence of antimicrobial resistance amongst pathogenic microorganisms is a worrying public health issue which needs urgent fix. Several attempts have been made to overcome this problem, most recently, the advent of broad spectrum antimicrobial agents have been one of them. In as much, antimicrobial resistance seems to persist amongst different pathogenic genera due to inappropriate use of antibiotics. Salmonella, a causative agent of typhoid and other human systemic complications have displayed multi-drug resistance to antimicrobial agents. This research work therefore aims at investigating the antimicrobial sensitivity of Salmonella species isolated from University of Mkar students. A total of 50 stool samples were collected in sterile sample containers and isolation of Salmonella was carried out using two classical selective media, Salmonella Shigella Agar and MacConkey Agar. In-vitro antimicrobial sensitivity test was carried out following the disk diffusion method using 10 antimicrobial agents. Salmonella species displayed high rate of resistance (70%) while showing a worrying low rate susceptibility (30%) to Aminoglycosides, Antifolates and even broad spectrum Fluoroquinolones. Salmonella may have adapted, or acquired resistance inherently as it was evident in very high resistance against common antimicrobial agents like Ampicillin, Co-trimoxazole, Augmentin, and Nalidixic acid. The misuse of antibiotics and therapeutics by the population is obviously the consequential factor for the acquisition of resistance among this genus. Therefore, appropriate drug administration and usage practices must be enforced by government and public health institutions to help curtail the danger of unleashing the post-antibiotic era upon us now, and in time to come.


2019 ◽  
Vol 7 (2) ◽  
pp. 49-54
Author(s):  
Alka Hasani ◽  
Nasim Asadi Faezi ◽  
Mohammad Ahangarzadeh Rezaee ◽  
Elham Sheykhsaran ◽  
Narges Darabi ◽  
...  

Background: Bloodstream infections are considered a significant medical concern associated with high morbidity and mortality rates. Therefore, physicians should be guided to use antimicrobial susceptibility patterns in order to select appropriate empiric antimicrobial agents to treat the patients who suffer from bacteremia. Objective: The present study aimed to determine antimicrobial resistance and susceptibility patterns in isolates collected from bloodstream infections. Materials and Methods: To achieve this, a total of 710 bacterial blood culture isolates were collected from Sina hospital, and then susceptibility patterns to a number of antibiotics were analyzed according to Clinical and Laboratory Standards Institute guidelines. Results: The identified isolates included Staphylococcus aureus 14 (20.6%), Escherichia coli 14 (20.6%), Acinetobacter baumannii 12 (17.6%), Pseudomonas aeruginosa 11 (16.2%), Coagulasenegative Staphylococcus 8 (11.8%), Klebsiella pneumoniae 6 (8.8%), and Enterobacter spp. 3 (4.4%). The total resistance rate to co-trimoxazole, ceftriaxone, ceftazidime, cefotaxime, ofloxacin, gentamicin, ciprofloxacin, levofloxacin, amikacin, and imipenem was 44 (64.7%), 42 (61.8%), 39 (57.4%), 38 (55.9%), 35 (51.51%), 32 (47.1%), 31 (45.6%), 25 (36.8%), and 27 (39.7%), respectively. Finally, the susceptibility rate to amikacin and imipenem was 43 (63.2%) and 41 (60.3%), respectively. Conclusion: In general, A. baumannii strains isolated from blood cultures were resistant to most antibiotics and the greatest sensitivity was observed to gentamicin (58.3%) compared to other antibiotics. Therefore, gentamicin was found as the most effective antibiotic for treating bloodstream infections caused by A. baumannii.


Author(s):  
Gizachew Muluneh Amera ◽  
Amit Kumar Singh

Salmonella are the major pathogenic bacteria in humans as well as in animals. Salmonella species are leading causes of acute gastroenteritis in several countries and salmonellosis remains an important public health problem worldwide, particularly in the developing countries. Isolation of Salmonella from a wide range of sources suggests that Salmonella is widespread in food animals and meat products and underlines the necessity for a joint and coordinated surveillance and monitoring programs for salmonellosis and other major food borne zoonotic diseases. Food animals harbor a wide range of Salmonella and so act as sources of contamination, which is of paramount epidemiological importance in non-typhoid human salmonellosis. Salmonellosis is more aggravated by the ever increasing rate of antimicrobial resistance strains in food animals. The high prevalence and dissemination of multidrug resistant (MDR) Salmonella have become a growing public health concern. Multidrug resistant (MDR) strains of Salmonella are now encountered frequently and the rates of multidrug resistance have increased considerably in recent years. Food animal consumption is a potential cause for antimicrobial resistant Salmonella illnesses besides, the common factors such as overcrowding, poverty, inadequate sanitary conditions, and poor personal hygiene. Practicing good sanitary measures, extensive education programs for proper hygiene and improvement of managements are solutions to eliminate the high bacteriological load as well as prevalence of Salmonella in cattle carcass. Furthermore, restricting the use of antimicrobial agents in food animals, designation of multidrug-resistant Salmonella as an adulterant in ground beef, improving the mechanisms for product trace-back investigations and wise and discriminate use of antimicrobials should be practiced to combat the ever increasing situation of antimicrobial resistance. So, this review used for updating information on their prevalence and resistance patterns is very important to suggest the acceptance of the carcass in relation to the standards and for proper selection and use of antimicrobial agents in a setting.


2020 ◽  
Vol 23 (6) ◽  
pp. 458-476
Author(s):  
Mohit Kumar ◽  
Mridula Saxena ◽  
Anil K. Saxena ◽  
Sisir Nandi

Objective: The world is under the grasp of dangerous post-antibiotics and antimicrobials attack where common infections may become untreatable, leading to premature deaths due to antimicrobial resistance (AMR). While an estimated 7,00,000 people die annually due to AMR, which is a public health threat to all communities in different parts of the world regardless of their economic status; however, this threat is serious in low- and middle-income countries having lack of sanitation and health infrastructure. The 68th World Health Assembly endorsed the Global Action Plan on antimicrobial resistance. Consequently, many countries started drafting and committing to National Action Plans against AMR. As strong as National Action Plans are in terms of prescribing rational use of antimicrobials, infection control practices, and related public health measures, without strong healthcare systems, these measures will have a limited impact on AMR in developing countries. Methods: The major reason for AMR is microbial quorum sensing (QS) that may strengthen the microbial community to generate inter-communication and virulence effects via quorum sensing mechanisms. Global stewardship to combat antimicrobial resistance aims to develop anti-quorum sensing compounds that can inhibit the biosynthetic pathway mediated different quorum sensing targets. Results: It may pave an effective attempt to minimize microbial quorum sensing mediated antimicrobial resistance. The present review describes QS mediated various potential target enzymes, their connection to AMR, and finds out the corresponding QS biosynthetic target inhibitors. Conclusion: These potential inhibitors can be derivatized to design and develop next-generation antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document