scholarly journals Identification of binding interaction between Curcumin derivative and PERK13 Proline rich receptor like protein kinase protein using In silico docking techniques – to help plants tackle salt water

2021 ◽  
Author(s):  
Prakash Angadipuram Vaithyanathan

Introduction: Arabidopsis thaliana, mouse ear cress or thale cress are small flowering plants included in the cruciferae family. They comprise of various characteristics such as diploid genetics, small genome size, rapid growth cycle, and relatively low repetitive DNA content, making it a perfect model for plant genome projects. Objective: The aim of this present Insilico research study is to carry out molecular drug docking studies between PERK13 Proline rich receptor like protein kinase and De O Acetylated Curcumin Di Galactose or digalactosylated curcumin, a derivative of curcumin. PERK13 protein is considered to play a significant role in helping plants tackle salinity levels in water. Methods: In this study, protein modelling tools and servers are used to model the 3D structure and the same is validated using Protein structure validation tools. Automated drug docking servers were used to dock the modelled protein with the chemical compound to analyse the electrostatic (H bond) interaction between PERK13 and De O Acetylated Curcumin Di Galactose, a better water soluble compound than curcumin. The docked structure was visualized using an advanced molecular visualization tool. Results and Discussion: The overall results obtained from this study on De O Acetylated Curcumin Di Galactose and PERK13 protein shows that De O Acetylated Curcumin Di Galactose, directly binds with the active site and other potentially binding regions of PERK13. Hence, it is concluded that De O Acetylated Curcumin Di Galactose could potentially play a vital role in future research related to the problem of helping the plants tackle increased saline levels in water. Keywords: A. thaliana, De O Acetylated Curcumin Di Galactose, Drug Docking, Insilico, PERK13, Protein Modelling.

1985 ◽  
Vol 248 (3) ◽  
pp. C203-C216 ◽  
Author(s):  
J. R. Williamson ◽  
R. H. Cooper ◽  
S. K. Joseph ◽  
A. P. Thomas

Receptor occupation by a variety of Ca2+-mobilizing hormones, such as alpha 1-adrenergic agents, vasopressin and angiotensin II, causes a rapid phosphodiesterase-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate in the plasma membrane with the production of the water soluble compound myo-inositol-1,4,5-trisphosphate (IP3) and the lipophilic molecule 1,2-diacylglycerol (DG). This review summarizes the recent evidence obtained in the liver that defines the roles of these products as intracellular messengers of hormone action. Intracellular Ca2+ mobilization is mediated by IP3, which releases Ca2+ from a subpopulation of the endoplasmic reticulum, resulting in a rapid increase of the cytosolic free Ca2+ concentration ( [Ca2+]i). Further effects of receptor occupancy are inhibition of the plasma membrane Ca2+-ATPase, despite net Ca2+ efflux, and an increased permeability of the plasma membrane to extracellular Ca2+. The activation of the phospholipid-dependent protein kinase C by DG does not alter Ca2+ fluxes across the plasma membrane. In contrast to some secretory cells, a synergism between protein kinase C activation and increased [Ca2+]i is not observed in liver. Activation of protein kinase C profoundly inhibits the response to alpha 1-adrenergic agonists, with only minimal effects on the vasopressin response. It is concluded that in liver the two inositol-lipid messenger systems, IP3 and DG, exert their effects by essentially separate pathways.


Author(s):  
Preethi Sudheer ◽  
Koushik Y ◽  
Satish P ◽  
Uma Shankar M S ◽  
R S Thakur

As a consequence of modern drug discovery techniques, there has been a steady increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble and solubility is one of the most important parameter to achieve desired concentration of drug in systemic circulation for therapeutic response. It is a great challenge for pharmaceutical scientist to convert those molecules into orally administered formulation with sufficient bioavailability.  Among the several approaches to improve oral bioavailability of these molecules, Self-micron emulsifying drug delivery system (SMEDDS) is one of the approaches usually used to improve the bioavailability of hydrophobic drugs. However, conventional SMEDDS are mostly prepared in a liquid form, which can have several disadvantages. Accordingly, solid SMEDDS (S-SMEDDS) prepared by solidification of liquid/semisolid self-micron emulsifying (SME) ingredients into powders have gained popularity. This article provides an overview of the recent advancements in S-SMEDDS such as methodology, techniques and future research directions.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Yousef Hijji ◽  
Rajeesha Rajan ◽  
Hamdi Ben Yahia ◽  
Said Mansour ◽  
Abdelkader Zarrouk ◽  
...  

The(3R,4R,6R)-3-(((E)-2-hydroxybenzylidene)amino)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,4,5-triol water-soluble Glucose amine Schiff base (GASB-1) product was made available by condensation of 2-hydroxybenzaldehyde with (3R,6R)-3-amino-6-(hydroxymethyl)-tetra-hydro-2H-pyran-2,4,5-triol under mono-mode microwave heating. A one-pot 5-minute microwave-assisted reaction was required to complete the condensation reaction with 90% yield and without having byproducts. The 3D structure of GASB-1 was solved from single crystal X-ray diffraction data and computed by DFT/6-311G(d,p). The Hirshfeld surface analysis (HSA), molecular electronic potential (MEP), Mulliken atomic charge (MAC), and natural population analysis (NPA) were performed. The IR and UV-Vis spectra were matched to their density functional theory (DFT) relatives and the thermal behavior was resolved in an open-room condition via thermogravimetry/Derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). The highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of state (DOS), and time-dependence TD-DFT computations were correlated to the experimental electron transfer in water and acrylonitrile solvents.


2021 ◽  
Vol 22 (5) ◽  
pp. 2473
Author(s):  
Jang Mi Han ◽  
Jae Kyung Sohng ◽  
Woo-Haeng Lee ◽  
Tae-Jin Oh ◽  
Hye Jin Jung

We recently discovered a novel nargenicin A1 analog, 23-demethyl 8,13-deoxynargenicin (compound 9), with potential anti-cancer and anti-angiogenic activities against human gastric adenocarcinoma (AGS) cells. To identify the key molecular targets of compound 9, that are responsible for its biological activities, the changes in proteome expression in AGS cells following compound 9 treatment were analyzed using two-dimensional gel electrophoresis (2-DE), followed by MALDI/TOF/MS. Analyses using chemical proteomics and western blotting revealed that compound 9 treatment significantly suppressed the expression of cyclophilin A (CypA), a member of the immunophilin family. Furthermore, compound 9 downregulated CD147-mediated mitogen-activated protein kinase (MAPK) signaling pathway, including c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) by inhibiting the expression of CD147, the cellular receptor of CypA. Notably, the responses of AGS cells to CypA knockdown were significantly correlated with the anticancer and antiangiogenic effects of compound 9. CypA siRNAs reduced the expression of CD147 and phosphorylation of JNK and ERK1/2. In addition, the suppressive effects of CypA siRNAs on proliferation, migration, invasion, and angiogenesis induction of AGS cells were associated with G2/M cell cycle arrest, caspase-mediated apoptosis, inhibition of MMP-9 and MMP-2 expression, inactivation of PI3K/AKT/mTOR pathway, and inhibition of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression. The specific interaction between compound 9 and CypA was also confirmed using the drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA) approaches. Moreover, in silico docking analysis revealed that the structure of compound 9 was a good fit for the cyclosporin A binding cavity of CypA. Collectively, these findings provide a novel molecular basis for compound 9-mediated suppression of gastric cancer progression through the targeting of CypA.


Author(s):  
Muhammed Jamsheer K ◽  
Manoj Kumar ◽  
Vibha Srivastava

AbstractThe Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 216 ◽  
Author(s):  
Ana Santos-Rebelo ◽  
Catarina Garcia ◽  
Carla Eleutério ◽  
Ana Bastos ◽  
Sílvia Castro Coelho ◽  
...  

Pancreatic cancer is the eighth leading cause of cancer death worldwide. For this reason, the development of more effective therapies is a major concern for the scientific community. Accordingly, plants belonging to Plectranthus genus and their isolated compounds, such as Parvifloron D, were found to have cytotoxic and antiproliferative activities. However, Parvifloron D is a very low water-soluble compound. Thus, nanotechnology can be a promising delivery system to enhance drug solubility and targeted delivery. The extraction of Parvifloron D from P. ecklonii was optimized through an acetone ultrasound-assisted method and isolated by Flash-Dry Column Chromatography. Then, its antiproliferative effect was selectivity evaluated against different tumor cell lines (IC50 of 0.15 ± 0.05 μM, 11.9 ± 0.7 μM, 21.6 ± 0.5, 34.3 ± 4.1 μM, 35.1 ± 2.2 μM and 32.1 ± 4.3 μM for BxPC3, PANC-1, Ins1-E, MCF-7, HaCat and Caco-2, respectively). To obtain an optimized stable Parvifloron D pharmaceutical dosage form, albumin nanoparticles were produced through a desolvation method (yield of encapsulation of 91.2%) and characterized in terms of size (165 nm; PI 0.11), zeta potential (−7.88 mV) and morphology. In conclusion, Parvifloron D can be efficiently obtained from P. ecklonii and it has shown selective cytotoxicity to pancreatic cell lines. Parvifloron D nanoencapsulation can be considered as a possible efficient alternative approach in the treatment of pancreatic cancer.


2020 ◽  
Vol 11 (4) ◽  
pp. 7937-7943
Author(s):  
Sugumar R ◽  
Saravana D ◽  
Pavithra N ◽  
Suresh Raj V ◽  
Sekar Babu M ◽  
...  

The study aims to investigate the Phytochemical Composition, Anti-oxidant and Anticancer properties of methanolic extract of Phyllanthus niruri Schumach & Thonn And the Protein Modelling and drug docking. The research deals with the methanolic extraction and phytochemical screening, determination of total phenolic and flavonoids contents and anti-oxidant assay. By performing GC-MS characterisation, various active metabolites are analysed. Thin-layer chromatography profiling of the Phyllanthus niruri methanolic extract was performed. The IC50 of the Phyllanthus niruri methanolic extract against PA-1 Cell lines(Ovarian cancer) was calculated. Docking studies also performed for antitumor activity by using Bioinformatics and Cheminformatics software on corilagin and cisplatin. The results suggested that the methanolic extract of Phyllanthus niruri leaves has the anticancer cancer effect on the ovarian cell line. The docking studies also performed that Corilagin interaction with T.F. receptor shows a high binding score when compared to cisplatin. Our future research can be done in this area to optimise anticancer activity efficacy. Our results can be further tested Clinico-pharmacologically to prove its efficiency in human beings.


1989 ◽  
Vol 145 ◽  
pp. 11-13
Author(s):  
P Schiøler

Density separation of mineral and sediment grains into fractions using heavy liquids traditionally employs organic compounds such as bromoform (density 2.89) and tetrabromoethane (density 2.96) which are known to be toxic even at very low concentrations (Van Haaften, 1969) and possibly carcinogenic. In addition, the separated grains are washed with organic solvents such as acetone which may be highly inflammable, and are also a health risk. In recent years, a new water soluble compound, sodium polytungstate (SPT), 3Na2WO4.9WO3.H2O, has become available as a medium for heavy liquid separations, offering an alternative to the heavy organic liquids. Hs use has been discussed by several workers (e.g. Plewinsky & Kamp, 1984; Krukowski, 1988) in a variety of geological settings. The present note summarises experience in GGU's palaeontological laboratory gained from working with SPT for a full year as a replacement for tetrabromoethane and bromoform in the separation of phosphatic microfossils from samples principally of Lower - Middle Cambrian age. Apart from improving the work environment by replacing high health-risk chernicals with water soluble products without known detrimental effects, SPT has proved to be both an economical and potentially efficient alternative to the organic heavy liquids. SPT is patented, and only available from Sometu, Falkenried 4, D 1000 Berlin 33, Federal Republic of Germany.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
Andini Andini ◽  
Cindy Fernanda Putri

Mango peel (Mangfera indica L.) has many pharmacological effects as a traditional medicine. Therefore, standardization of mango peel simplisia needs to be done as a preparation of phytopharmaca raw material. This research aimed to obtain standardization of mango peel simplisia include specific and non-specific parameter. The research procedures include plant determination, simplisia preparation as well as specific standardization test (includes organoleptic, water-soluble compound concentration, and ethanol solution compound concentration) and nonspecific standardization test (includes moisture content, dried shrinkage, total ash content and acid insoluble ash content). The specific organoleptic parameters of dried mango peel simplisia have a distinctive sweet aroma, bitter taste, and brownish yellow colour. Water-soluble and ethanol-soluble concentrations are 22,36% ± 1,17% and 9,56% ± 0,07%. Moisture content is 9,09% ± 1,44%. Dried shrinkage rate is 0,19% ± 0,04%. Total ash and acid insoluble ash contents are 4,11% ± 0,10% and 0,14% ± 0,03%. The mango peel simplisia has met the quality standard of the raw material.


Sign in / Sign up

Export Citation Format

Share Document