scholarly journals Physiological and molecular mechanism of tolerance of two maize genotypes under multiple abiotic stresses.

2021 ◽  
Author(s):  
Suphia Rafique

Abiotic stresses are the major threat to crops regardless of their nature, duration, and frequency, their occurrence either singly, and or combination is deleterious for the plant growth and development. Maize is the most important crop largely grown in the tropical regions in the summer rainy season, often facing a stress combination of drought and waterlogging. We previously showed under multiple stresses up-regulated leaf proteins of maize plants were involved to enhance the tolerance mechanism of tolerant genotype. Whereas, in susceptible genotypes up-regulated proteins ameliorate to survive the stressful condition. Further to understand the response of roots proteome under multiple stresses was determined using the 2DE technique. The results of the root proteome show the up-regulated proteins of CML49 genotype (tolerant) are involved in enhancing the N content, cell wall remodeling, and acclimatization during the stresses. Up-regulated proteins of CML100 genotype (sensitive) are stressed markers of roots' primary and secondary metabolism. However, the root proteome of both genotypes correlates with the leaf proteome (previous). Therefore, the present study and our previous results provide comprehensive insight into the molecular mechanisms of tolerance in multiple abiotic stresses of maize plants.

2020 ◽  
Author(s):  
Suphia Rafique

AbstractDrought, heat, high temperature, waterlogging, low-N stress, and salinity are the major environmental constraints that limit plant productivity. In tropical regions maize grown during the summer rainy season, and often faces irregular rains patterns, which causes drought, and waterlogging simultaneously along with low-N stress and thus affects crop growth and development. The two maize genotypes CML49 and CML100 were subjected to combination of abiotic stresses concurrently (drought and low-N / waterlogging and low-N). Metabolic profiling of leaf and roots of two genotypes was completed using GC-MS technique. The aim of study to reveal the differential response of metabolites in two maize genotypes under combination of stresses and to understand the tolerance mechanism. The results of un-targeted metabolites analysis show, the accumulated metabolites of tolerant genotype (CML49) in response to combined abiotic stresses were related to defense, antioxidants, signaling and some metabolites indirectly involved in nitrogen restoration of the maize plant. Alternatively, some metabolites of sensitive genotype (CML100) were regulated in response to defense, while other metabolites were involved in membrane disruption and also as the signaling antagonist. Therefore, the present study provides insight into the molecular mechanisms of tolerance under various stresses of maize plants, that governed on the regulation of cell wall remodeling, maintain metabolic homeostasis, defense against the pathogen, proper signaling, and restore growth under stress conditions.


Author(s):  
Sudha K. Nair ◽  
Pervez Haider Zaidi ◽  
Madhumal Thayil Vinayan ◽  
Gajanan Saykhedkar

Abstract Understanding the impact of excess moisture (EM) on maize plants at various growth stages, and studying the phenological, physiological and molecular responses of tolerant maize genotypes towards adaptation to EM stress, could help define ways in which this trait could be improved through targeted breeding. Thus, this chapter discusses the (i) impact of EM stress on maize plants, (ii) phenological adaptations and physiological mechanisms leading to EM stress tolerance in maize, and (iii) molecular signature of EM stress tolerance. Genetic studies on EM stress tolerance in maize are presented, and the application of molecular mreeding for EM tolerance in maize is described.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Lukas Gorecki ◽  
Martin Andrs ◽  
Jan Korabecny

Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1150
Author(s):  
Jana Tomc ◽  
Nataša Debeljak

Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4209
Author(s):  
Karolina Kot ◽  
Natalia Łanocha-Arendarczyk ◽  
Michał Ptak ◽  
Aleksandra Łanocha ◽  
Elżbieta Kalisińska ◽  
...  

Leishmaniasis, malaria, toxoplasmosis, and acanthamoebiasis are protozoan parasitic infections. They remain important contributors to the development of kidney disease, which is associated with increased patients’ morbidity and mortality. Kidney injury mechanisms are not fully understood in protozoan parasitic diseases, bringing major difficulties to specific therapeutic interventions. The aim of this review is to present the biochemical and molecular mechanisms in kidneys infected with Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Acanthamoeba spp. We present available mechanisms of an immune response, oxidative stress, apoptosis process, hypoxia, biomarkers of renal injury in the serum or urine, and the histopathological changes of kidneys infected with the selected parasites. Pathomechanisms of Leishmania spp. and Plasmodium spp. infections have been deeply investigated, while Toxoplasma gondii and Acanthamoeba spp. infections in the kidneys are not well known yet. Deeper knowledge of kidney involvement in leishmaniasis and malaria by presenting their mechanisms provides insight into how to create novel and effective treatments. Additionally, the presented work shows gaps in the pathophysiology of renal toxoplasmosis and acanthamoebiasis, which need further research.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 403
Author(s):  
Kgalaletso Othibeng ◽  
Lerato Nephali ◽  
Anza-Tshilidzi Ramabulana ◽  
Paul Steenkamp ◽  
Daniel Petras ◽  
...  

Humic substance (HS)-based biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, cellular and molecular mechanisms governing the agronomically observed effects of HS on plants remain enigmatic. Here, we report a global metabolic reprogramming of maize leaves induced by a humic biostimulant under normal and nutrient starvation conditions. This reconfiguration of the maize metabolism spanned chemical constellations, as revealed by molecular networking approaches. Plant growth and development under normal conditions were characterized by key differential metabolic changes such as increased levels of amino acids, oxylipins and the tricarboxylic acid (TCA) intermediate, isocitric acid. Furthermore, under starvation, the humic biostimulant significantly impacted pathways that are involved in stress-alleviating mechanisms such as redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodelling. Thus, this study reveals that the humic biostimulant induces a remodelling of inter-compartmental metabolic networks in maize, subsequently readjusting the plant physiology towards growth promotion and stress alleviation. Such insights contribute to ongoing efforts in elucidating modes of action of biostimulants, generating fundamental scientific knowledge that is necessary for development of the biostimulant industry, for sustainable food security.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 43
Author(s):  
Marco Mangiagalli ◽  
Marina Lotti

β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.


2021 ◽  
Vol 22 (12) ◽  
pp. 6644
Author(s):  
Xupeng Zang ◽  
Ting Gu ◽  
Wenjing Wang ◽  
Chen Zhou ◽  
Yue Ding ◽  
...  

Due to the high rate of spontaneous abortion (SAB) in porcine pregnancy, there is a major interest and concern on commercial pig farming worldwide. Whereas the perturbed immune response at the maternal–fetal interface is an important mechanism associated with the spontaneous embryo loss in the early stages of implantation in porcine, data on the specific regulatory mechanism of the SAB at the end stage of the implantation remains scant. Therefore, we used high-throughput sequencing and bioinformatics tools to analyze the healthy and arresting endometrium on day 28 of pregnancy. We identified 639 differentially expressed lncRNAs (DELs) and 2357 differentially expressed genes (DEGs) at the end stage of implantation, and qRT-PCR was used to verify the sequencing data. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immunohistochemistry analysis demonstrated weaker immune response activities in the arresting endometrium compared to the healthy one. Using the lasso regression analysis, we screened the DELs and constructed an immunological competitive endogenous RNA (ceRNA) network related to SAB, including 4 lncRNAs, 11 miRNAs, and 13 genes. In addition, Blast analysis showed the applicability of the constructed ceRNA network in different species, and subsequently determined HOXA-AS2 in pigs. Our study, for the first time, demonstrated that the SAB events at the end stages of implantation is associated with the regulation of immunobiological processes, and a specific molecular regulatory network was obtained. These novel findings may provide new insight into the possibility of increasing the litter size of sows, making pig breeding better and thus improving the efficiency of animal husbandry production.


2010 ◽  
Vol 20 (6) ◽  
pp. 379-387 ◽  
Author(s):  
L.A. Carvalho ◽  
B.A. Garner ◽  
T. Dew ◽  
H. Fazakerley ◽  
C.M. Pariante

Sign in / Sign up

Export Citation Format

Share Document