scholarly journals Spatial scales of competition and a growth-motility tradeoff interact to determine bacterial coexistence

2022 ◽  
Author(s):  
Thierry Kuhn ◽  
Marine Mamin ◽  
Saskia Bindschedler ◽  
Redouan Bshary ◽  
Aislinn Estoppey ◽  
...  

The coexistence of competing species is a long-lasting puzzle in evolutionary ecology research. Despite abundant experimental evidence showing that the opportunity for coexistence decreases as niche overlap increases between species, bacterial species and strains competing for the same resources are commonly found across diverse spatially heterogeneous habitats. We thus hypothesized that the spatial scale of competition may play a key role in determining bacterial coexistence, and interact with other mechanisms that promote coexistence, including a growth-motility tradeoff. To test this hypothesis, we let two Pseudomonas putida strains compete at local and regional scales by inoculating them either in a mixed droplet or in separate droplets in the same Petri dish, respectively. We also created conditions that allow the bacterial strains to disperse across abiotic or fungal hyphae networks. We found that competition at the local scale led to competitive exclusion while regional competition promoted coexistence. When competing in the presence of dispersal networks, the growth-motility tradeoff promoted coexistence only when the strains were inoculated in separate droplets. Our results provide a mechanism by which existing laboratory data suggesting competitive exclusion at a local scale is reconciled with the widespread coexistence of competing bacterial strains in complex natural environments with dispersal.

2015 ◽  
Author(s):  
Miguel G. Matias ◽  
Dominique Gravel ◽  
Marine Combe ◽  
Timothee Poisot ◽  
Claire Barbera ◽  
...  

Antagonistic interactions such as competition and predation shape the structure and dynamics of ecological communities. Their combined effects can affect the species richness within a particular trophic level. Despite theory linking the complementarity of interactions across trophic levels and ecosystem functioning, there is a shortage of empirical tests of such predictions. We present an experimental investigation of these combined effects within a bacteria-phage interaction network. We measured the biomass yield of combinations of bacterial strains under increasing levels of bacteriophage richness. Our results show an increasing impact of phage on bacteria with increasing phage diversity. In contrast, no combination of phages significantly changed the overall productivity of bacterial mixed cultures when compared with expectations based on bacterial monocultures. Finally, we found that the addition of phages decreases the realized niche overlap among pair of bacterial species with the greatest reduction occurring when all phages were present. Our results show that the productivity of this system is the results from the combined effects of exploitative (shared resources between bacteria) and apparent (shared phages between bacteria) competition.


2015 ◽  
Author(s):  
Miguel G. Matias ◽  
Dominique Gravel ◽  
Marine Combe ◽  
Timothee Poisot ◽  
Claire Barbera ◽  
...  

Antagonistic interactions such as competition and predation shape the structure and dynamics of ecological communities. Their combined effects can affect the species richness within a particular trophic level. Despite theory linking the complementarity of interactions across trophic levels and ecosystem functioning, there is a shortage of empirical tests of such predictions. We present an experimental investigation of these combined effects within a bacteria-phage interaction network. We measured the biomass yield of combinations of bacterial strains under increasing levels of bacteriophage richness. Our results show an increasing impact of phage on bacteria with increasing phage diversity. In contrast, no combination of phages significantly changed the overall productivity of bacterial mixed cultures when compared with expectations based on bacterial monocultures. Finally, we found that the addition of phages decreases the realized niche overlap among pair of bacterial species with the greatest reduction occurring when all phages were present. Our results show that the productivity of this system is the results from the combined effects of exploitative (shared resources between bacteria) and apparent (shared phages between bacteria) competition.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


2008 ◽  
Vol 54 (6) ◽  
pp. 501-508 ◽  
Author(s):  
Karina Cogo ◽  
Michelle Franz Montan ◽  
Cristiane de Cássia Bergamaschi ◽  
Eduardo D. Andrade ◽  
Pedro Luiz Rosalen ◽  
...  

The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii , Porphyromonas gingivalis , or Fusobacterium nucleatum and dual-species biofilms of S. gordonii – F. nucleatum and F. nucleatum – P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis , Streptococcus mitis , Propionibacterium acnes , Actinomyces naeslundii , and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Kattia Núñez-Montero ◽  
Leticia Barrientos

The recent emergence of antibiotic-resistant bacteria has become a critical public health problem. It is also a concern for industries, since multidrug-resistant microorganisms affect the production of many agricultural and food products of economic importance. Therefore, discovering new antibiotics is crucial for controlling pathogens in both clinical and industrial spheres. Most antibiotics have resulted from bioprospecting in natural environments. Today, however, the chances of making novel discoveries of bioactive molecules from various well-known sources have dramatically diminished. Consequently, unexplored and unique environments have become more likely avenues for discovering novel antimicrobial metabolites from bacteria. Due to their extreme polar environment, Antarctic bacteria in particular have been reported as a potential source for new antimicrobial compounds. We conducted a narrative review of the literature about findings relating to the production of antimicrobial compounds by Antarctic bacteria, showing how bacterial adaptation to extreme Antarctic conditions confers the ability to produce these compounds. We highlighted the diversity of antibiotic-producing Antarctic microorganisms, including the phyla Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Bacteroidetes, which has led to the identification of new antibiotic molecules and supports the belief that research on Antarctic bacterial strains has important potential for biotechnology applications, while providing a better understanding of polar ecosystems.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4958
Author(s):  
Jessa Marie V. Makabenta ◽  
Jungmi Park ◽  
Cheng-Hsuan Li ◽  
Aritra Nath Chattopadhyay ◽  
Ahmed Nabawy ◽  
...  

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


2017 ◽  
Author(s):  
Joshua E. Goldford ◽  
Nanxi Lu ◽  
Djordje Bajic ◽  
Sylvie Estrela ◽  
Mikhail Tikhonov ◽  
...  

AbstractMicrobes assemble into complex, dynamic, and species-rich communities that play critical roles in human health and in the environment. The complexity of natural environments and the large number of niches present in most habitats are often invoked to explain the maintenance of microbial diversity in the presence of competitive exclusion. Here we show that soil and plant-associated microbiota, cultivated ex situ in minimal synthetic environments with a single supplied source of carbon, universally re-assemble into large and dynamically stable communities with strikingly predictable coarse-grained taxonomic and functional compositions. We find that generic, non-specific metabolic cross-feeding leads to the assembly of dense facilitation networks that enable the coexistence of multiple competitors for the supplied carbon source. The inclusion of universal and non-specific cross-feeding in ecological consumer-resource models is sufficient to explain our observations, and predicts a simple determinism in community structure, a property reflected in our experiments.


2016 ◽  
Vol 3 (1) ◽  
pp. 65-66
Author(s):  
Arumugasamy K ◽  
Nantha Kumar R ◽  
Abdul Kaffoor H ◽  
Shalimol A

The methanolic rhizome extract of A. calcarata was evaluated for its antibacterial activities against five bacterial strains Pseudomonas aeuroginosa, Proteus vulgaris, Salmonella paratyphi, Bacillus thurungiensis and Staphylococcus faccealis. The extract has inhibited all the tested bacterial species with different manner at various concentration. However the higher level zone of inhibition in 400 (mg/ml) is significant against all the above said bacterial strains of these Salmonella paratyphi. Based on the present study it can be conculuded that the plant rhizome possess potent anti bacterial activity.


2019 ◽  
Vol 5 ◽  
pp. 38-56 ◽  
Author(s):  
Khulod A. Hemida ◽  
Amany M.M. Reyad

Salinity is one of the most dangerous environmental limiting factors of the plant productivity. A wide range of adaptation strategies is required to overcome salinity stress. However, such strategies seem to be long drawn and cost-intensive. It has been confirmed in recent years that plant growth promoting endophytes (PGPEs) that have the ability to further build a symbiotic association with their host to improve host plant salt tolerance. In our investigation try to improve plant salt tolerance using different species of endophytic bacteria. From the total eight endophytic bacterial species were isolated from root, stem, and leaf of Carthamustinctorius (safflower) plant, two isolates were capable of using 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source, and they are of positive results for (ACC) deaminase activity and indole-3-acetic acid (IAA) production. The bacterial isolates were identified using 16S ribosomal DNA technique as Bacillus cereus and Bacillus aerius and had accession numbers MG708176 and MG711593 respectively, by submitting their sequences in GenBank database. This study showed that the bacterial strains B. cereus and B. aerius are valuable biological plant growth promoters that could enhance salt tolerance in Safflower plants under 100, 200, and 300mMNaCl levels resulting in an increase in plant growth and ascorbate-glutathione redox cycle, in comparison with the non-inoculated controls. Our findings reported that the co-inoculation of the two selected endophytic bacteria strains were successfully isolated from Safflower seedlings significantly alleviated the harmful effects of salt stress, promoted plant growth and biomass yield.


Sign in / Sign up

Export Citation Format

Share Document