scholarly journals Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms

2018 ◽  
Author(s):  
Clemente F. Arias ◽  
Miguel A. Herrero ◽  
Luis F. Echeverri ◽  
Gerardo E. Oleaga ◽  
José M. López

AbstractHuman skeleton undergoes constant remodeling during the whole life. By means of such process, which occurs at a microscopic scale, worn out bone is replaced by new, fully functional one. Multiple bone remodeling events occur simultaneously and independently throughout the body, so the whole skeleton is completely renewed about every ten years.Bone remodeling is performed by groups of cells called Bone Multicellular Units (BMU). BMUs consist of different cell types; some are specialized in destroying old bone, whereas others produce new bone to replace the former. The whole process is tightly regulated so that the amount of new bone produced exactly balances that of old one removed and bone microscopic structure is maintained.To date, many regulatory molecules involved in bone remodeling have been identified, but the precise mechanism of BMU operation remains to be fully elucidated. Given the complexity of the signaling pathways already known, the question arises of ascertaining whether such complexity is an inherent requirement of the process, or a consequence of operational redundancy.In this work we propose a minimal model of BMU function which involves a small number of signals and accounts for fully functional BMU operation. Our main assumptions are i) at any given time, any cell within a BMU can select only one among a reduced choice of decisions: divide, die, migrate or differentiate, ii) such decision is irreversibly determined by depletion of an appropriate internal inhibitor and iii) the dynamics of any such inhibitor is coupled to that of a few external mediators. It is shown that efficient BMU operation then unfolds as an emergent property, which results from individual decisions taken by cells in the BMU unit in the absence of any external planning.Author summaryOur skeleton is a living organ that is being renewed throughout our life. This task is accomplished by teams of bone cells termed as Bone Multicellular Units (BMUs) that are recruited when and where needed, to operate at places where bone has lost functionality either for an excess of mechanical stress or because loss of activity. Once assembled, BMU remove old bone and replace it by new one, and disband as soon as their mission has been accomplished. No single bone evades BMU screening, so that the whole human skeleton is completely renewed approximately every ten years.It is natural to wonder how such robust and fascinating process is regulated. Many signaling pathways involved in bone remodeling have been identified so far, but whether all of them are necessary for BMU operation remains unclear. In this work we show that just a reduced number of such signals could suffice for that purpose. This suggests that a large degree of redundancy might have been kept in place, perhaps as a consequence of different convergent strategies developed in the course of evolution.

2021 ◽  
Vol 3 (2) ◽  
pp. 89-98
Author(s):  
Andreea Cozea ◽  
◽  
Gheorghita Tanase ◽  
Mihaela Neagu ◽  

Complex studies were performed combining macroscopic and biochemical analyzes of selected biomonitors, exposed in exposure systems outdoor with mixtures of pollutants as well as controlled exposure with certain concentrations of pollutants in fumigation chambers. In this study, the following plant species were used as bioindicators: Nicotiana tabacum, Petunia hybrida, Ricinus comunis, Trifolium pretense. The exposure plant samples were compared with control samples of biomonitors maintained under standardized conditions in the climate chamber. Classical methods of biochemistry combined with those of exposure biomonitoring have led to the completion of knowledge about the ways of action of plants to pollution. The analysis of some of the antioxidant compounds that are representing a structural class of chemicals (enzymes) with a wide range of biological functions, with the role of free radical inhibition, was performed. Many of the constituent compounds in certain cell types, also called active compounds, in this case, polyphenols are present in the body of some plant species. Polyphenol's presence in organisms, that are not usually present or are in normal quantities, is caused by stress, (pollution being a stress factor). Large amounts of polyphenols in plants are also given by the presence of pollutants in the environment. Through these extensive combined studies, it has been demonstrated that pollution can be a degenerative factor at the biochemical and physiological level, at the plant tissue level, with irreversible effects.


Author(s):  
Charles L. Penninger ◽  
Neal M. Patel ◽  
Andrés Tovar

Each year, bone metabolic diseases affect millions of people of all ages, genders, and races. Common diseases such as osteopenia and osteoporosis result from the disruption of the bone remodeling process and can place an individual at a serious fracture risk. Bone remodeling is the complex process by which old bone is replaced with new tissue. This process occurs continuously in the body and is carried out by bone cells that are regulated by numerous metabolic and mechanical factors. The remodeling process provides for various functions such as adaptation to mechanical loading, damage repair, and mineral homeostasis. An improved understanding of this process is necessary to identify patients at risk of bone disease and to assess appropriate treatment protocols. High-fidelity computer models are needed to understand the complex interaction of all parameters involved in bone remodeling. The primary focus of this investigation is to present a new computational framework that utilizes mathematical rules to mechanistically model the cellular mechanisms involved in the bone remodeling process. The computational framework used in this research combines accepted biological principles, cellular-level rules in a cellular automaton framework, and finite-element analysis. This computational model is referred to as hybrid cellular automaton (HCA) model. The simulations obtained with the HCA model allow to predict time-dependent morphology variations at the tissue level as a result of biological changes at the cellular level.


2020 ◽  
Vol 47 (11) ◽  
pp. 9087-9096
Author(s):  
Eliana Rita Sanpaolo ◽  
Cinzia Rotondo ◽  
Daniela Cici ◽  
Ada Corrado ◽  
Francesco Paolo Cantatore

AbstractJAK/STAT signaling pathway is involved in many diseases, including autoimmune diseases, which are characterized by a close interconnection between immune and bone system. JAK/STAT pathway is involved in bone homeostasis and plays an important role in proliferation and differentiation of some cell types, including osteoblasts and osteoclasts. Different molecules, such as cytokines, hormones, and growth factors are responsible for the activation of the JAK/STAT pathway, which leads, at the nuclear level, to start DNA transcription of target genes. Bone cells and remodeling process are often influenced by many cytokines, which act as strong stimulators of bone formation and resorption. Our aim, through careful research in literature, has been to provide an overview of the role of the JAK/STAT pathway in bone remodeling and on bone cells, with a focus on cytokines involved in bone turnover through this signal cascade. The JAK/STAT pathway, through the signal cascade activation mediated by the interaction with many cytokines, acts on bone cells and appears to be involved in bone remodeling process. However, many other studies are needed to completely understand the molecular mechanism underlying these bone process.


Endocrinology ◽  
2014 ◽  
Vol 155 (7) ◽  
pp. 2363-2376 ◽  
Author(s):  
Fatima. Z. Alshbool ◽  
Subburaman Mohan

The imbalance between bone formation and resorption during bone remodeling has been documented to be a major factor in the pathogenesis of osteoporosis. Recent evidence suggests a significant role for the tight junction proteins, Claudins (Cldns), in the regulation of bone remodeling processes. In terms of function, whereas Cldns act “canonically” as key determinants of paracellular permeability, there is considerable recent evidence to suggest that Cldns also participate in cell signaling, ie, a “noncanonical function”. To this end, Cldns have been shown to regulate cell proliferation, differentiation, and gene expression in a variety of cell types. The present review will discuss Cldns’ structure, their expression profile, regulation of expression, and their canonical and non- canonical functions in general with special emphasis on bone cells. In order to shed light on the noncanonical functions of Cldns in bone, we will highlight the role of Cldn-18 in regulating bone resorption and osteoclast differentiation. Collectively, we hope to provide a framework for guiding future research on understanding how Cldns modulate osteoblast and osteoclast function and overall bone homeostasis. Such studies should provide valuable insights into the pathogenesis of osteoporosis, and may highlight Cldns as novel targets for the diagnosis and therapeutic management of osteoporosis.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 414
Author(s):  
Saja Baraghithy ◽  
Yael Soae ◽  
Dekel Assaf ◽  
Liad Hinden ◽  
Shiran Udi ◽  
...  

The renal proximal tubule cells (RPTCs), well-known for maintaining glucose and mineral homeostasis, play a critical role in the regulation of kidney function and bone remodeling. Deterioration in RPTC function may therefore lead to the development of diabetic kidney disease (DKD) and osteoporosis. Previously, we have shown that the cannabinoid-1 receptor (CB1R) modulates both kidney function as well as bone remodeling and mass via its direct role in RPTCs and bone cells, respectively. Here we employed genetic and pharmacological approaches that target CB1R, and found that its specific nullification in RPTCs preserves bone mass and remodeling both under normo- and hyper-glycemic conditions, and that its chronic blockade prevents the development of diabetes-induced bone loss. These protective effects of negatively targeting CB1R specifically in RPTCs were associated with its ability to modulate erythropoietin (EPO) synthesis, a hormone known to affect bone mass and remodeling. Our findings highlight a novel molecular mechanism by which CB1R in RPTCs remotely regulates skeletal homeostasis via a kidney-to-bone axis that involves EPO.


Author(s):  
Giorgia Di Lorenzo ◽  
Lena M. Westermann ◽  
Timur A. Yorgan ◽  
Julian Stürznickel ◽  
Nataniel F. Ludwig ◽  
...  

Abstract Purpose Pathogenic variants in GNPTAB and GNPTG, encoding different subunits of GlcNAc-1-phosphotransferase, cause mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma. This study aimed to investigate the cellular and molecular bases underlying skeletal abnormalities in patients with MLII and MLIII. Methods We analyzed bone biopsies from patients with MLIII alpha/beta or MLIII gamma by undecalcified histology and histomorphometry. The skeletal status of Gnptgkoand Gnptab-deficient mice was determined and complemented by biochemical analysis of primary Gnptgko bone cells. The clinical relevance of the mouse data was underscored by systematic urinary collagen crosslinks quantification in patients with MLII, MLIII alpha/beta, and MLIII gamma. Results The analysis of iliac crest biopsies revealed that bone remodeling is impaired in patients with GNPTAB-associated MLIII alpha/beta but not with GNPTG-associated MLIII gamma. Opposed to Gnptab-deficient mice, skeletal remodeling is not affected in Gnptgko mice. Most importantly, patients with variants in GNPTAB but not in GNPTG exhibited increased bone resorption. Conclusion The gene-specific impact on bone remodeling in human individuals and in mice proposes distinct molecular functions of the GlcNAc-1-phosphotransferase subunits in bone cells. We therefore appeal for the necessity to classify MLIII based on genetic in addition to clinical criteria to ensure appropriate therapy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1445
Author(s):  
Taisa Nogueira Pansani ◽  
Thanh Huyen Phan ◽  
Qingyu Lei ◽  
Alexey Kondyurin ◽  
Bill Kalionis ◽  
...  

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Yang Zhao ◽  
Hao Guo ◽  
Wenda Wang ◽  
Guoyang Zheng ◽  
Zhan Wang ◽  
...  

Abstract Objective Tuberous sclerosis complex (TSC) is a rare autosomal dominant disease characterized by lesions throughout the body. Our previous study showed the abnormal up-regulation of miRNAs plays an important part in the pathogenesis of TSC-related renal angiomyolipoma (TSC-RAML). circRNAs were known as important regulators of miRNA, but little is known about the circRNAs in TSC-RAMLs. Methods Microarray chips and RNA sequencing were used to identify the circRNAs and mRNAs that were differently expressed between the TSC-RAML and normal kidney tissue. A competitive endogenous RNA (ceRNA) regulatory network was constructed to reveal the regulation of miRNAs and mRNAs by the circRNAs. The biological functions of circRNA and mRNA were analyzed by pathway analysis. Microenvironmental cell types were estimated with the MCP-counter package. Results We identified 491 differentially expressed circRNAs (DECs) and 212 differentially expressed genes (DEGs), and 6 DECs were further confirmed by q-PCR. A ceRNA regulatory network which included 6 DECs, 5 miRNAs, and 63 mRNAs was established. Lipid biosynthetic process was significantly up-regulated in TSC-RAML, and the humoral immune response and the leukocyte chemotaxis pathway were found to be down-regulated. Fibroblasts are enriched in TSC-RAML, and the up-regulation of circRNA_000799 and circRNA_025332 may be significantly correlated to the infiltration of the fibroblasts. Conclusion circRNAs may regulate the lipid metabolism of TSC-RAML by regulation of the miRNAs. Fibroblasts are enriched in TSC-RAMLs, and the population of fibroblast may be related to the alteration of circRNAs of TSC-RAML. Lipid metabolism in fibroblasts is a potential treatment target for TSC-RAML.


2021 ◽  
Vol 22 (7) ◽  
pp. 3649
Author(s):  
Patricia Ramos-Ramírez ◽  
Omar Tliba

Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and “directly” regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.


2021 ◽  
Vol 22 (15) ◽  
pp. 8182
Author(s):  
Yongguang Gao ◽  
Suryaji Patil ◽  
Jingxian Jia

Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document