Effects of variations in design and process parameters on assembly process yield of area array solder interconnect packages

Author(s):  
Chunho Kim ◽  
D.F. Baldwin
Author(s):  
Krishna Sailaja A ◽  
Amareshwar P

In order to see the functionality and toxicity of nanoparticles in various food and drug applications, it is important to establish procedures to prepare nanoparticles of a controlled size. Desolvation is a thermodynamically driven self-assembly process for polymeric materials. In this study, we prepared BSA nanoparticles using the desolvation technique using acetone as desolvating agent. Acetone was added intermittently into 1% BSA solution at different pH under stirring at 700 rpm. Amount of acetone added, intermittent timeline of acetone addition, and pH of solution were considered as process parameters to be optimized. The effect of the process parameters on size of the nanoparticles was studied. The results indicated that the size control of BSA nanoparticles was achieved by adding acetone intermittently. The standard deviation of average size of BSA nanoparticles at each preparation condition was minimized by adding acetone intermittently. The intermittent addition in polymeric aqueous solution can be useful for size control for food or drug applications.  


Revista Fitos ◽  
2020 ◽  
Vol 14 (4) ◽  
pp. 469-475
Author(s):  
Lucas Oliveira Rodrigues ◽  
Rachel Andrade de Faria ◽  
Marcos Martins Gouvêa ◽  
Carlos Augusto de Freitas Peregrino ◽  
Elizabeth Valverde Macedo ◽  
...  

Uncaria tomentosa (Willd. ex Schult.) DC. (Cat's claw) is a plant member of the Rubiaceae family, from the Amazon region, and used in traditional medicine as raw material for phytomedicines indicated for arthritis and osteoarthritis. This study aimed to evaluate the spray drying process parameters on the properties of different extracts obtained from Uncaria tomentosa. A reduced 24-1 multifactorial design was applied to evaluate the importance of the equipment variables (pump speed, spray nozzle diameter, air inlet temperature, and atomization airflow rate) in the process. Maltodextrin and acacia gum were used as carriers in a 1:1 (m/m) ratio, considering the solid residue content of the liquid plant extract. Process yield, moisture, and hygroscopicity were evaluated as dependent variables. Higher atomization airflow rate led to higher process yield for powdered dried extracts with maltodextrin. Higher temperature led to lower moisture contents regarding powdered dried extracts with acacia gum. No variable, for any carrier, was considered significant for hygroscopicity. The best spray drying configuration for the desired characteristics (i.e. lower hygroscopicity and moisture) used the larger spray nozzle with a diameter of 1.2 mm and the higher temperature of 150 °C, with both carriers.


2014 ◽  
Vol 575 ◽  
pp. 848-853
Author(s):  
Kai Zhang ◽  
Guo Xi Li ◽  
Jing Zhong Gong ◽  
Bao Zhong Wu ◽  
Meng Zhang ◽  
...  

Due to lack of considering the non-geometric process parameters during assembly process planning, it is difficult to control the production cycle, cost, quality, reliability, stability and consistency of high-performance mechanical systems. To change this situation, a prototype software is developed by taking into account the non-geometric process parameters. Based on the alignment information, this paper concentrates on the data modeling of the system. With the system, the manufacturing process can achieve the assembly materials management, assembly process planning, alignment process monitoring, alignment data collection and statistical analysis. After analyzing the process data, design parameters will be refined and assembly performance will be optimized.


Author(s):  
Ying Zhan ◽  
Austin Fergusson ◽  
Lacey R. McNally ◽  
Richey M. Davis ◽  
Bahareh Behkam

Bacteria-mediated drug delivery systems comprising nanotherapeutics conjugated onto bacteria synergistically augment the efficacy of both therapeutic modalities in cancer therapy. Nanocarriers preserve therapeutics’ bioavailability and reduce systemic toxicity, while bacteria selectively colonize the cancerous tissue, impart intrinsic and immune-mediated antitumor effects, and propel nanotherapeutics interstitially. The optimal bacteria-nanoparticle (NP) conjugates would carry the maximal NP load with minimal motility speed hindrance for effective interstitial distribution. Furthermore, a well-defined and repeatable NP attachment density distribution is crucial to determining these biohybrid systems’ efficacious dosage and robust performance. Herein, we utilized our Nanoscale Bacteria-Enabled Autonomous Delivery System (NanoBEADS) platform to investigate the effects of assembly process parameters of mixing method, volume, and duration on NP attachment density and repeatability. We also evaluated the effect of linkage chemistry and NP size on NP attachment density, viability, growth rate, and motility of NanoBEADS. We show that the linkage chemistry impacts NP attachment density while the self-assembly process parameters affect the repeatability and, to a lesser extent, attachment density. Lastly, the attachment density affects NanoBEADS’ growth rate and motility in an NP size-dependent manner. These findings will contribute to the development of scalable and repeatable bacteria-nanoparticle biohybrids for applications in drug delivery and beyond. Corresponding author(s) Email:  [email protected]  


2016 ◽  
Vol 36 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Chao Shao ◽  
Xin Ye ◽  
Zhijing Zhang ◽  
Dengyu Zhou ◽  
Yuhong Liu

Purpose Micro ultra-thin tubes have important implications in aerospace, nuclear energy and other fields. In microassembly process, these parts are characterized by following reasons: the small size can easily lead to damage when gripping, even for low intensity and the parts are mainly affected by the instability of light source, for vision-based systems, the visual information about ultra-thin tubes is difficult to gather and the contact state is hard to monitor. Design/methodology/approach The paper presents a new method to adjust the position deviations based on contact forces during microassembly processes. Specific research is such that the assembly model was established based both on mechanic calculation and numerical simulation; the assembly task was carried out on an in-house microassembly system with coaxial alignment function (MSCA), the contact statements were controlled based on force sensor feedback signals and the model of the relationship between contact force and assembly deviations was established. Through a comparative study, the results of experiment and simulation differ by less than 11 per cent, validating the accuracy and feasibility of the method. Findings The model of assembly force and position deviations of micro ultra-thin tubes based on MSCA has been built. Besides, the assembly force threshold, and the assembly process parameters have been obtained. Originality/value The assembly process parameters obtained from experiments can be applied in the precision assembly and provide theoretical guidance and technical support to the precision assembly of the multi-scale parts.


2017 ◽  
Vol 37 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Xin Li ◽  
Jianzhong Shang ◽  
Hong Zhu

Purpose This paper aims to consider a problem of assembly sensitivity in a multi-station assembly process. The authors focus on the assembly process of aircrafts, which includes cabins and inertial navigation system (INSs), and establish the assembly process state space model for their assembly sensitivity research. Design/methodology/approach To date, the process-related errors that cause large variations in key product characteristics remains one of the most critical research topics in assembly sensitivity analysis. This paper focuses on the unique challenges brought about by the multi-station system: a system-level model for characterizing the variation propagation in the entire process, and the necessity of describing the system response to variation inputs at both station-level and single fixture-level scales. State space representation is used to describe the propagation of variation in such a multi-station process, incorporating assembly process parameters such as fixture-locating layout at individual stations and station-to-station locating layout change. Findings Following the sensitivity analysis in control theory, a group of hierarchical sensitivity indices is defined and expressed in terms of the system matrices in the state space model, which are determined by the given assembly process parameters. Originality/value A case study of assembly sensitivity for a multi-station assembly process illustrates and validates the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document