scholarly journals A 3D Coupled Approach for the Thermal Design of Aero-Engine Combustor Liners

Author(s):  
L. Mazzei ◽  
A. Andreini ◽  
B. Facchini ◽  
L. Bellocci

The adoption of lean burn combustion to limit NOx emissions of modern aero-engines imposes a drastic reduction of air dedicated to cooling combustor dome and liners. In the latest years many aero-engine manufacturers are hence implementing effusion cooling, which provides uniform protection on the hot side of the liner and significant heat removal within the perforation. With an industrial perspective, the development of such components is usually carried out with different strategies depending on the level of accuracy required in the design phase involved (i.e preliminary or detailed). In the collaboration between GE Avio and University of Florence, the preliminary design of these devices is carried out with Therm1D, an in-house thermal flow-network solver based on the 1D correlative approach proposed by Lefebvre. This strategy, however, is not capable of taking into account the complexity of the three-dimensional nature of the flow field and the interaction between swirling flow and liner cooling, making necessary the use of Computational Fluid Dynamics (CFD) in the most advanced phases of the design process. Nevertheless, notwithstanding the increasing popularity of CFD, even a RANS simulation of a single sector of an annular combustor still presents a challenge, when the cooling system is taken into account. This issue becomes more critical in case of modern effusion cooled combustors, which may contain thousands of holes for each sector. With the aim of of increasing the fidelity of the prediction, keeping in mind the industrial needs for limited computational efforts, a new tool has been developed: Therm3D. This approach involves the CFD simulation of the combustor flametube by modelling effusion cooling with point mass sources, whereas the fluid dynamic prediction of the remaining part is fulfilled exploiting the equivalent flow-network solver implemented in Therm1D, which provides the estimation of flow split and cold side heat loads. The solution is coupled with two separate calculations aimed at solving flame radiation and heat conduction within the metal. This paper describes the main findings of the application of Therm3D to a lean annular combustor. The results obtained have been compared to experimental data and the above mentioned numerical tools employed during the design process.

Author(s):  
A. Andreini ◽  
B. Facchini ◽  
L. Mazzei ◽  
L. Bellocci ◽  
F. Turrini

Increasingly stringent limitations imposed on aircraft engine emissions have led many manufacturers toward lean combustion technology, which involves a relevant increase in mass flow rate dedicated to primary combustion, leading as a consequence to a reduction of air dedicated to cooling of liners. One of the most promising cooling techniques in such conditions is represented by effusion cooling, which consists of an array of closely spaced discrete film cooling holes. This cooling method is based on a protective layer of cooling flow on the hot side of the liner, enhancing at the same time the heat removal within the holes. In the latest years many aero engine manufacturers have increased the research and technology investment on this combustion technology. Working in partnership with the University of Florence, specific component design tools and experimental techniques have been improved by Avio Aero for combustor gas turbine investigation. From a design perspective, CFD analysis has become a key tool up to the early stages of novel combustor design process, producing affordable direct 3D optimization of combustor aerodynamics. Nevertheless, a RANS simulation of even only a single sector of an annular combustor still presents a challenge when the cooling system is taken into account. This issue becomes more critical in case of modern effusion cooled combustors, which may contain up to two thousand holes for the single sector. For this reason, many efforts have been devoted to develop methodologies based on film cooling modeling. Among the approaches published in the literature, models based on local sources represent a good compromise between simplicity and accuracy, with the capability to automatically perform a Conjugate Heat Transfer analysis. This type of methodology has been already defined and validated by the authors, with comparison on effusion cooled plates in terms of experimental overall effectiveness measurements as well as the application on a tubular combustor test case. In the context of this work, the proposed approach has been applied to the analysis of a lean annular combustor with the purpose of investigating pressure losses, flow split and metal temperature field. The results obtained have been compared to experimental data and different numerical tools exploited during the preliminary design of these devices.


Author(s):  
Shanping Shen ◽  
Guoqian Song

Abstract Multi-sector combustor tests are essential to aero-engine annular combustor development. For the test rig design, it is necessary to ensure that the pressure drop and flow split to the various portions of multi-sector combustor are consistent with the combustor component. This paper introduces a new kind of multi-sector combustor rig. The diffuser system of the test rig is different with the combustor component. This test rig is simple in structure and easy to machine. To evaluate the flow split and pressure drop of the test rig, a 1D-flow network approach is applied to multi-sector combustor rig design. The calculated results show good agreement with the experiment data. In order to study whether the test rig can simulate flow split and pressure loss of combustor components, flow split and pressure loss under different design features are analyzed. Result shows that by changing the effective area of inner/outer annular inlet baffle and inner/outer bleed air plate, inner/outer liner pressure drop and the ratio of air flow to W31c can be changed in a wide range. Thus, this kind of multi-sector combustor rig is convenient to change the multi-sector combustor test rig design to meet the requirements of the pressure drop and flow split design of combustor component, even when the rig has been manufactured.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2090 ◽  
Author(s):  
Guglielmo Lomonaco ◽  
Giacomo Alessandroni ◽  
Walter Borreani

Accelerator Driven Systems (ADS) seem to be a good solution for safe nuclear waste transmutation. One of the most important challenges for this kind of machine is the target design, particularly for what concerning the target cooling system. In order to optimize this component a CFD-based approach has been chosen. After the definition of a reference design (Be target cooled by He), some parameters have been varied in order to optimize the thermal-fluid-dynamic features. The final optimized target design has an increased security margin for what regarding Be melting and reduces the maximum coolant velocity (and consequently even more the pressure drops).


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Alessio Picchi ◽  
Lorenzo Tarchi ◽  
Fabio Turrini

State-of-the-art liner cooling technology for modern combustors is represented by effusion cooling (or full-coverage film cooling). Effusion is a very efficient cooling strategy based on the use of multiperforated liners, where the metal temperature is lowered by the combined protective effect of the coolant film and heat removal through forced convection inside each hole. The aim of this experimental campaign is the evaluation of the thermal performance of multiperforated liners with geometrical and fluid-dynamic parameters ranging among typical combustor engine values. Results were obtained as the adiabatic film effectiveness following the mass transfer analogy by the use of pressure sensitive paint, while the local values of the overall effectiveness were obtained by eight thermocouples housed in as many dead holes about 2 mm below the investigated surface. Concerning the tested geometries, different porosity levels were considered: such values were obtained by both increasing the hole diameter and pattern spacing. Then the effect of the hole inclination and aspect ratio pattern shape were tested to assess the impact of typical cooling system features. Seven multiperforated planar plates, reproducing the effusion arrays of real combustor liners, were tested, imposing six blowing ratios in the range 0.5–5. Additional experiments were performed in order to explore the effect of the density ratio (DR=1;1.5) on the film effectiveness. Test samples were made of stainless steel (AISI304) in order to achieve the Biot number similitude for the overall effectiveness tests. To extend the validity of the survey a correlative analysis was performed to point out, in an indirect way, the augmentation of the hot side heat transfer coefficient due to effusion jets. Finallyv,in order to address the thermal behavior of the different geometries in the presence of gas side radiation, additional simulations were performed considering different levels of radiative heat flux.


Author(s):  
Amirhosein Moonesi Shabestary ◽  
Eckhard Krepper ◽  
Dirk Lucas ◽  
Thomas Höhne

The current paper comprises CFD-modelling and simulation of condensation and heat transfer inside horizontal pipes. Designs of future nuclear boiling water reactor concepts are equipped with emergency cooling systems which are passive systems for heat removal. The emergency cooling system consists of slightly inclined horizontal pipes which are immersed in a tank of subcooled water. At normal operation conditions, the pipes are filled with water and no heat transfer to the secondary side of the condenser occurs. In the case of an accident the water level in the core is decreasing, steam comes in the emergency pipes and due to the subcooled water around the pipe, this steam will condense. The emergency condenser acts as a strong heat sink which is responsible for a quick depressurization of the reactor core when any accident happens. The actual project is defined in order to model all these processes which happen in the emergency cooling systems. The most focus of the project is on detection of different morphologies such as annular flow, stratified flow, slug flow and plug flow. The first step is the investigation of condensation inside a horizontal tube by considering the direct contact condensation (DCC). Therefore, at the inlet of the pipe an annular flow is assumed. In this step, the Algebraic Interfacial Area Density (AIAD) model is used in order to simulate the interface. The second step is the extension of the model to consider wall condensation effect as well which is closer to the reality. In this step, the inlet is pure steam and due to the wall condensation, a liquid film occurs near the wall which leads to annular flow. The last step will be modelling of different morphologies which are occurring inside the tube during the condensation via using the Generalized Two-Phase Flow (GENTOP) model extended by heat and mass transfer. By using GENTOP the dispersed phase is able to be considered and simulated. Finally, the results of the simulations will be validated by experimental data which will be available in HZDR. In this paper the results of the first part has been presented.


Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Alessio Picchi ◽  
Lorenzo Tarchi ◽  
Fabio Turrini

State-of-the-art liner cooling technology for modern combustors is represented by effusion cooling (or full-coverage film cooling). Effusion is a very efficient cooling strategy based on the use of multi-perforated liners, where metal temperature is lowered by the combined protective effect of coolant film and heat removal through forced convection inside each hole. The aim of this experimental campaign is the evaluation of the thermal performance of multi-perforated liners with geometrical and fluid-dynamic parameters ranging among typical combustor engine values. Results were obtained as adiabatic film effectiveness following the mass transfer analogy by the use of Pressure Sensitive Paint, while local values of overall effectiveness were obtained by eight thermocouples housed in as many dead holes about 2 mm below the investigated surface. Concerning the tested geometries, different porosity levels were considered: such values were obtained both increasing the hole diameter and pattern spacing. Then the effect of hole inclination and aspect ratio pattern shape were tested to assess the impact of typical cooling system features. Seven multi perforated planar plates, reproducing the effusion arrays of real combustor liners, were tested imposing 6 blowing ratios in the range 0.5–5. Test samples were made of stainless steel (AISI304) in order to achieve Biot number similitude for overall effectiveness tests. To extend the validity of the survey a correlative analysis was performed to point out, in an indirect way, the augmentation of hot side heat transfer coefficient due to effusion jets. Finally, to address the thermal behaviour of the different geometries in presence of gas side radiation, additional simulations were performed considering different levels of radiative heat flux.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 313
Author(s):  
Marco Sinagra ◽  
Calogero Picone ◽  
Costanza Aricò ◽  
Antonio Pantano ◽  
Tullio Tucciarelli ◽  
...  

Crossflow turbines represent a valuable choice for energy recovery in aqueducts, due to their constructive simplicity and good efficiency under variable head jump conditions. Several experimental and numerical studies concerning the optimal design of crossflow hydraulic turbines have already been proposed, but all of them assume that structural safety is fully compatible with the sought after geometry. We show first, with reference to a specific study case, that the geometry of the most efficient impeller would lead shortly, using blades with a traditional circular profile made with standard material, to their mechanical failure. A methodology for fully coupled fluid dynamic and mechanical optimization of the blade cross-section is then proposed. The methodology assumes a linear variation of the curvature of the blade external surface, along with an iterative use of two-dimensional (2D) computational fluid dynamic (CFD) and 3D structural finite element method (FEM) simulations. The proposed methodology was applied to the design of a power recovery system (PRS) turbine already installed in an operating water transport network and was finally validated with a fully 3D CFD simulation coupled with a 3D FEM structural analysis of the entire impeller.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


2021 ◽  
Vol 11 (7) ◽  
pp. 3236
Author(s):  
Ji Hyeok Kim ◽  
Joon Ahn

In a field test of a hybrid desiccant cooling system (HDCS) linked to a gas engine cogeneration system (the latter system is hereafter referred to as the combined heat and power (CHP) system), in the cooling operation mode, the exhaust heat remained and the latent heat removal was insufficient. In this study, the performance of an HDCS was simulated at a humidity ratio of 10 g/kg in conditioned spaces and for an increasing dehumidification capacity of the desiccant rotor. Simulation models of the HDCS linked to the CHP system were based on a transient system simulation tool (TRNSYS). Furthermore, TRNBuild (the TRNSYS Building Model) was used to simulate the three-dimensional structure of cooling spaces and solar lighting conditions. According to the simulation results, when the desiccant capacity increased, the thermal comfort conditions in all three conditioned spaces were sufficiently good. The higher the ambient temperature, the higher the evaporative cooling performance was. The variation in the regeneration heat with the outdoor conditions was the most dominant factor that determined the coefficient of performance (COP). Therefore, the COP was higher under high temperature and dry conditions, resulting in less regeneration heat being required. According to the prediction results, when the dehumidification capacity is sufficiently increased for using more exhaust heat, the overall efficiency of the CHP can be increased while ensuring suitable thermal comfort conditions in the cooling space.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Gozawa ◽  
Yoshihiro Takamura ◽  
Tomoe Aoki ◽  
Kentaro Iwasaki ◽  
Masaru Inatani

AbstractWe investigated the change in the retinal gas cover rates due to intraocular gas volume and positions using computational eye models and demonstrated the appropriate position after pars plana vitrectomy (PPV) with gas tamponade for rhegmatogenous retinal detachments (RRDs). Computational fluid dynamic (CFD) software was used to calculate the retinal wall wettability of a computational pseudophakic eye models using fluid analysis. The model utilized different gas volumes from 10 to 90%, in increments of 10% to the vitreous cavity in the supine, sitting, lateral, prone with closed eyes, and prone positions. Then, the gas cover rates of the retina were measured in each quadrant. When breaks are limited to the inferior retina anterior to the equator or multiple breaks are observed in two or more quadrants anterior to the equator, supine position maintained 100% gas cover rates in all breaks for the longest duration compared with other positions. When breaks are limited to either superior, nasal, or temporal retina, sitting, lower temporal, and lower nasal position were maintained at 100% gas cover rates for the longest duration, respectively. Our results may contribute to better surgical outcomes of RRDs and a reduction in the duration of the postoperative prone position.


Sign in / Sign up

Export Citation Format

Share Document