Computational and Experimental Study of Gas Bubbles Removal in a Microfluidic System

Author(s):  
Hamed Gholami Derami ◽  
Jeff Darabi

Formation of unwanted bubbles is one the main issues in biomicrofluidics-based applications such as lab-on-a-chip devices, and adversely affects the performance of these systems. In this work we report a simple and efficient method for removing gas bubbles from liquid filled microchannels. This bubble removal system consists of a cavity on which a hydrophobic membrane is bonded parallel to the main fluidic channel to vent gas bubbles normal to the flow direction. A T-junction configuration is used to generate gas bubbles prior to entering the bubble removal cavity. A finite volume-based computational model is developed using ANSYS FLUENT to simulate gas removal characteristics of the system. The effects of various geometric parameters and operating conditions are studied both through numerical simulations and experimentally.

Author(s):  
Ravindra Vundavilli ◽  
Jeff Darabi

This paper presents an experimental study to determine bubble removal characteristics of nanofibrous membranes in microfluidic devices. It is well known that the presence of gas bubbles in fluidic channels can cause significant flow disturbances and adversely affect the overall performance and operation of microfluidic devices. In this study, a microfluidic device is designed and fabricated to generate and extract bubbles from a microfluidic channel. A T-junction is used to produce controllable bubbles at the entrance of fluidic channel. The generated bubbles are then transported to a bubble removal region and vented through a highly porous hydrophobic membrane. Four different hydrophobic PTFE membranes with different pore sizes ranging from 0.45 to 3 μm were used to permeate air bubbles. The fluidic channel width was 500 μm and channel height ranged from 100 to 300 μm. The effects of pore size, channel height, and liquid flow rate on the bubble removal rate are investigated. The results reveal that the rate of bubble removal increases with increasing the pore size and channel height but decreases with increasing the liquid flow rate.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012057
Author(s):  
P Khavanov ◽  
A Chulenyov

Abstract This article is devoted to the most pressing issue of the use of condensing boilers in Russia for autonomous heat supply systems - the organization of smoke removal. If we compare a standard gas boiler with its condensing counterpart, then we can come to the conclusion that their differences lie not only in some innovations, but in radically different principles of operation. Yes, in both cases, the heating of the coolant occurs due to the combustion of the gas, but in the condensing boiler, the heating of the coolant is additionally performed with the help of exhaust gases. Moreover, the smoke removal system in this case produces the primary heating of the liquid - the exhaust gases, which contain a large amount of water vapor, first heat the coolant, and only then directly the gas heats it up to the specified temperature. It is thanks to all this that fuel savings occur - the efficiency of condensing boilers is 15-20% higher compared to standard units of this type. The set of domestic directives and regulations on autonomous heat supply in individual issues, focusing on foreign developments, at the same time has significant features in the requirements for the design and operating conditions of combustion products removal systems, especially for condensing boilers.


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Author(s):  
K. R. Mrinal ◽  
Md. Hamid Siddique ◽  
Abdus Samad

A progressive cavity pump (PCP) is a positive displacement pump and has been used as an artificial lift method in the oil and gas industry for pumping fluid with solid content and high viscosity. In a PCP, a single-lobe rotor rotates inside a double-lobe stator. Articles on computational works for flows through a PCP are limited because of transient behavior of flow, complex geometry and moving boundaries. In this paper, a 3D CFD model has been developed to predict the flow variables at different operating conditions. The flow is considered as incompressible, single phase, transient, and turbulent. The dynamic mesh model in Ansys-Fluent for the rotor mesh movement is used, and a user defined function (UDF) written in C language defines the rotor’s hypocycloid path. The mesh deformation is done with spring based smoothing and local remeshing technique. The computational results are compared with the experiment results available in the literature. Thepump gives maximum flowrate at zero differential pressure.


2013 ◽  
Vol 47 (4) ◽  
pp. 36-44 ◽  
Author(s):  
Prasun Chatterjee ◽  
Raymond N. Laoulache

AbstractVertical axis turbines (VATs) excel over horizontal axis turbines in their independent flow direction. VATs that operate in an enclosure, e.g., a diffuser shroud, are reported to generate more power than unducted VATs. A diffuser-shrouded, high solidity of 36.67%, three-blade VAT with NACA 633-018 airfoil section is modeled in 2-D using the commercial software ANSYS-FLUENT®. Incompressible, unsteady, segregated, implicit, and second order in time and space solver is implemented in association with the Spalart-Allmaras turbulent model with a reasonable computational cost. The computational results are assessed against experimental data for unducted VAT at low tip speed ratios between 1 and 2 for further numerical analysis on diffuser models. Different diffuser designs are investigated using suitable nozzle size, area ratio, length-to-diameter ratio and angles between the diffuser inner surfaces. The numerical model shows that, for a specific diffuser design, the ducted VAT performance coefficient can be augmented by almost 90% over its unducted counterpart.


Author(s):  
Wu Jian-hui ◽  
Li Xiao-xiao ◽  
Hu Ji-feng ◽  
Chen Jin-gen ◽  
Yu Cheng-gang ◽  
...  

The isotope Xe-135 has a large thermal neutron absorption cross section and is considered to be the most important fission product. A very small amount of such neutron poison may significantly affect the reactor reactivity since they will absorb the neutrons from chain reaction, therefore monitoring their atomic density variation during reactor operation is extremely important. In a molten reactor system, Xe-135 is entrained in the liquid fuel and continuously circulates through the core where the neutron irradiation functions and the external core where only nuclei decay occurs, at the same time, an off-gas removal system operates for online removing Xe-135 through helium bubbling. These unique features of MSR complicate the Xe-135 dynamic behaviors, and the calculation method applied in the solid fuel reactor system is not suitable. From this point, we firstly analytically deduce the nuclei evolution law of Xe-135 in the flowing salt with an off-gas removal system functioning. A study of Xe-135 dynamic behavior with the core power change, shutdown, helium bubbling failure and startup then is conducted, and several valuable conclusions are obtained for MSR design.


2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.


2020 ◽  
pp. 45-51
Author(s):  
Pavel Timofeev ◽  
◽  
Vladimir Panchenko ◽  
Sergey Kharchyk ◽  
◽  
...  

This study presents flow simulation over the reentry capsule at supersonic and hypersonic speeds. Numerical algorithms solve for the CFD method, which is produced using help ANSYS Fluent 19.2. The using GPU core to get a solution faster. The main purpose – flow simulation and numerical analysis reentry capsule; understand the behavior of supersonic and hypersonic flow and its effect on the reentry capsule; compare temperature results for the range Mach numbers equals 2–6. This study showed results on velocity counters, on temperature counters and vector of velocity for range Mach numbers equals 2–6. This study demonstrates the importance of understanding the effects of shock waves and illustrates how the shock wave changes as the Mach number increases. For every solves, the mesh had adapted for pressure gradient and velocity gradient to get the exact solution. As a result of the obtained solution, it is found that a curved shock wave appears in front of the reentry capsule. The central part of which is a forward shock. An angular expansion process is observed, which is a modified picture of the Prandtl- Mayer flow that occurs in a supersonic flow near the sharp edge of the expanding region. It is revealed that with an increase in the Mach number, the shock wave approaches the bottom of the reentry capsule, and there is also a slope of the shock to the flow direction, with an increase in the Mach number. The relevance and significance of this problem for the design of new and modernization of old reentry capsules.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Meike Hauschildt ◽  
Martin Gall ◽  
Richard Hernandez

AbstractEven after the successful introduction of Cu-based metallization, the electromigration failure risk has remained one of the important reliability concerns for advanced process technologies. The observation of strong bimodality for the electron up-flow direction in dual-inlaid Cu interconnects has added complexity, but is now widely accepted. More recently, bimodality has been reported also in down-flow electromigration, leading to very short lifetimes due to small, slit-shaped voids under vias. For a more thorough investigation of these early failure phenomena, specific test structures were designed based on the Wheatstone Bridge technique. The use of these structures enabled an increase of the tested sample size past 1.1 million, allowing a direct analysis of electromigration failure mechanisms at the single-digit ppm regime. Results indicate that down-flow electromigration exhibits bimodality at very small percentage levels, not readily identifiable with standard testing methods. The activation energy for the down-flow early failure mechanism was determined to be 0.83 ± 0.01 eV. Within the small error bounds of this large-scale statistical experiment, this value is deemed to be significantly lower than the usually reported activation energy of 0.90 eV for electromigration-induced diffusion along Cu/SiCN interfaces. Due to the advantages of the Wheatstone Bridge technique, we were also able to expand the experimental temperature range down to 150 °C, coming quite close to typical operating conditions up to 125 °C. As a result of the lowered activation energy, we conclude that the down-flow early failure mode may control the chip lifetime at operating conditions. The slit-like character of the early failure void morphology also raises concerns about the validity of the Blech-effect for this mechanism. A very small amount of Cu depletion may cause failure even before a stress gradient is established. We therefore conducted large-scale statistical experiments close to the critical current density-length product (jL)*. The results indicate that even at very small failure percentages, this critical product seems to extrapolate to about 2900 ± 400 A/cm for SiCOH-based dielectrics, close to previously determined (jL)* products of about 3000 ± 500 A/cm for the same technology node and dielectric material, acquired with single link interconnects. More detailed studies are currently ongoing to verify the extrapolation methods at small percentages. Furthermore, the scaling behavior of the early failure population was investigated.


Author(s):  
Thomas P. Lewandowski ◽  
Tah-Teh Yang

The purpose of this paper is to present results of an analytical procedure which accounts for variations in temperature dependent fluid properties in the flow direction of a heat exchanger. The procedure is called the multi-element method and is used in the performance calculations of a rotary regenerator subject to axial temperature variations greater than 2:1. The multi-element method partitions the flow length and evaluates the heat exchanger by combining the performances of each length. The results show graphically the differences between using the multi-element method and a more commonly used single-element method. The differences presented are between the predicted regenerator disk thickness and between the predicted core pressure drop for a variety of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document