Average Droplet Diameter Spatial Distribution in a Spray After Gas-Assisted Atomization

Author(s):  
Konstantin Pougatch ◽  
Martha Salcudean ◽  
Jennifer McMillan

Gas-assisted atomization is used in many industries to produce finely dispersed droplets. Knowledge about the droplet size distribution guides the design and development of the nozzle as well as of the whole processes. This knowledge can be obtained through experimental and modeling works that usually complement each another. In this paper we present an application of the mathematical model previously developed for gas-assisted atomization to the prediction of the average droplet diameter distribution in a spray and compare the results with experimental findings. The model is based on a two-fluid Eulerian-Eulerian treatment of the motion of the phases with a catastrophic phase inversion (atomization). It also includes the compressibility effects for the gaseous phase and can be applied to both the flow through the nozzle-atomizer and to the dispersion of the spray. The model accounts for the break-up and coalescence of bubbles and droplets due to interfacial shear and collisions. The diameter of the particle (bubble or droplet) is represented by its local mean average value that varies throughout the flow field. Simulations are conducted for the flow of air and water through the convergent-divergent nozzle, which is similar to the one used in commercial fluid cokers, a bitumen upgrading apparatus, for steam-assisted atomization of bitumen. It is found that while there are wide experimentally observed local distributions of the particle diameter, the concept of the average diameter still allows for satisfactory predictions of its average values and spatial variations. In agreement with the experiments, the numerical model demonstrated that the largest droplet diameter is located in the axial area, and the diameter values reduce towards the periphery of the jet. In addition, the average diameter increases slightly and its radial variation becomes more uniform as the distance from the nozzle orifice increases.

2011 ◽  
Vol 233-235 ◽  
pp. 2949-2954 ◽  
Author(s):  
Jin Tao Wu ◽  
Yu Qiang Dai ◽  
Ze Wu Wang ◽  
Feng Xia Liu

The heat transfer in granular materials can be found in many industry processes. But the phenomenon is not well understood. A particle contact heat transfer model (PCHM) was developed by taking each independent mechanism into account. The model combined with DEM was used to simulate heat transfer between particles and inserted heating surface. Comparing with each mechanism, the heat conduction through contact area has the most contribute to apparent effective quantity of heat transfer. The key factors effecting on Qeff include: the number of particles contacting with heating surface, the contact time, and the contact area. When the average diameter is same, the diameter distribution has little effects on heat transfer. While the average diameter is different, the effective heat transfer coefficient decreases with the increasing of particle diameter. The quantity of heat transfer is spatially non-uniform.


2020 ◽  
Vol 77 (7) ◽  
pp. 688-696
Author(s):  
Dusica Mirkovic ◽  
Svetlana Ibric

Background/Aim. The application of nanoemulsions (NE) in parenteral nutrition represents a very important advancement that marked the medicine and pharmacy of the twentieth century. Over the years, the technology of the production of NE and total parenteral nutrition (TPN) nanoemulsions or admixtures has undergone constant improvement. Representing the continuation of the previous research, this paper deals with nanoemulsions in a concentration of 20% that were prepared under laboratory conditions. The main emphasis was put on the possibility of detecting the potential presence of large droplets or agglomerates of droplets that could cause fatal effects. In addition, the quality assessment of the TPN admixture containing these nanoemulsions was performed. These results were compared with the results obtained from the TPN admixture prepared from the industrial emulsion (Lipofundin MCT/LCT 20%?). Methods. During the 30-day period of monitoring nanoemulsion physical-chemical characteristics, the volume diameters that define the width of the lipid droplet size distribution were determined using the laser diffraction method. In addition, TPN physical and chemical characteristics were monitored for 72 hours and included: measurements of the mean droplet diameter, the volume diameter, distribution of the droplet size, ie. polydispersity index (PDI), ?-potential, and pH values. Results. Obtained results were in accordance with the literature data related to the quality of parenteral nanoemulsions (values of volume diameters ranged between 50 and 490 nm). TPN admixtures remained stable during the testing period, even in cases when TPN admixtures containing either a newly formed or an industrial nanoemulsion were tested. Conclusion. Characteristics of investigated nanoemulsions do not significantly alter under the ambient temperature storage. If the preparation principles and the component mixing order are followed, TPN admixture possessing satisfactory physical and chemical quality and stability can be obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oxana Prishchepa ◽  
Mikhail Krakhalev ◽  
Vladimir Rudyak ◽  
Vitaly Sutormin ◽  
Victor Zyryanov

AbstractElectro-optical cell based on the cholesteric liquid crystal is studied with unique combination of the boundary conditions: conical anchoring on the one substrate and planar anchoring on another one. Periodic structures in cholesteric layer and their transformation under applied electric field are considered by polarizing optical microscopy, the experimental findings are supported by the data of the calculations performed using the extended Frank elastic continuum approach. Such structures are the set of alternating over- and under-twisted defect lines whose azimuthal director angles differ by $$180^\circ$$ 180 ∘ . The $$U^+$$ U + and $$U^-$$ U - -defects of periodicity, which are the smooth transition between the defect lines, are observed at the edge of electrode area. The growth direction of defect lines forming a diffraction grating can be controlled by applying a voltage in the range of $$0\le \, V \le 1.3$$ 0 ≤ V ≤ 1.3  V during the process. Resulting orientation and distance between the lines don’t change under voltage. However, at $$V>1.3$$ V > 1.3  V $$U^+$$ U + -defects move along the defect lines away from the electrode edges, and, finally, the grating lines collapse at the cell’s center. These results open a way for the use of such cholesteric material in applications with periodic defect structures where a periodicity, orientation, and configuration of defects should be adjusted.


2021 ◽  
Vol 13 (11) ◽  
pp. 6052
Author(s):  
Paola Comodi ◽  
Azzurra Zucchini ◽  
Umberto Susta ◽  
Costanza Cambi ◽  
Riccardo Vivani ◽  
...  

A multi-methodic analysis was performed on five samples of fly ashes coming from different biomasses. The aim of the study was to evaluate their possible re-use and their dangerousness to people and the environment. Optical granulometric analyses indicated that the average diameter of the studied fly ashes was around 20 µm, whereas only ~1 vol% had diameters lower that 2.5 µm. The chemical composition, investigated with electron probe microanalysis, indicated that all the samples had a composition in which Ca was prevalent, followed by Si and Al. Large contents of K and P were observed in some samples, whereas the amount of potentially toxic elements was always below the Italian law thresholds. Polycyclic aromatic hydrocarbons were completely absent in all the samples coming from combustion plants, whereas they were present in the fly ashes from the gasification center. Quantitative mineralogical content, determined by Rietveld analysis of X-ray powder diffraction data, indicated that all the samples had high amorphous content, likely enriched in Ca, and several K and P minerals, such as sylvite and apatite. The results obtained from the chemo-mineralogical study performed make it possible to point out that biomass fly ashes could be interesting materials (1) for amendments in clayey soils, as a substitution for lime, to stimulate pozzolanic reactions and improve their geotechnical properties, thus, on the one hand, avoiding the need to mine raw materials and, on the other hand, re-cycling waste; and (2) as agricultural fertilizers made by a new and ecological source of K and P.


Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Bin Cheng ◽  
Wentao Xia ◽  
Mengmeng Li ◽  
...  

AbstractIn August 2018, a remarkable polynya was observed off the north coast of Greenland, a perennial ice zone where thick sea ice cover persists. In order to investigate the formation process of this polynya, satellite observations, a coupled ice-ocean model, ocean profiling data, and atmosphere reanalysis data were applied. We found that the thinnest sea ice cover in August since 1978 (mean value of 1.1 m, compared to the average value of 2.8 m during 1978–2017) and the modest southerly wind caused by a positive North Atlantic Oscillation (mean value of 0.82, compared to the climatological value of −0.02) were responsible for the formation and maintenance of this polynya. The opening mechanism of this polynya differs from the one formed in February 2018 in the same area caused by persistent anomalously high wind. Sea ice drift patterns have become more responsive to the atmospheric forcing due to thinning of sea ice cover in this region.


Author(s):  
Lu Yang ◽  
Qun Zheng ◽  
Aqiang Lin

Turbofan engine compressor is most severely threatened by the entry of liquid water during flight descent. This study aims to deeply understand the fluctuations of compressor performance parameters caused by water ingestion through frequency spectrum analysis. The water content and droplet diameter distribution are determined based on the real heavy rain environment. Results reveal that most of the droplets actually entering the core compressor have a particle size of less than 100 μm. In addition, the formation and motion of water film plays a critical role in affecting the fluctuation characteristics. Water ingestion deteriorates the compression performance and aggravates the unsteady fluctuations of the fan. However, the performance of the core compressor is less affected by water ingestion, but their fluctuations are still exacerbated. For some important parameters, such as inlet mass flow rate, total pressure ratio, total temperature ratio, compression work and efficiency, their main frequency of fluctuation are switched from the original blade passing frequency to the rotor passing frequency, and their amplitudes are correspondingly amplified to varying degrees. These phenomena can be observed in both the fluctuations of the fan and core compressor. Moreover, the operating point of them will be in the long-period and large-amplitude fluctuations, which leads them experiences the non-optimal state for a long time and threatens their operating stability.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
F. Basso Basset ◽  
F. Salusti ◽  
L. Schweickert ◽  
M. B. Rota ◽  
D. Tedeschi ◽  
...  

AbstractEfficient all-photonic quantum teleportation requires fast and deterministic sources of highly indistinguishable and entangled photons. Solid-state-based quantum emitters—notably semiconductor quantum dots—are a promising candidate for the role. However, despite the remarkable progress in nanofabrication, proof-of-concept demonstrations of quantum teleportation have highlighted that imperfections of the emitter still place a major roadblock in the way of applications. Here, rather than focusing on source optimization strategies, we deal with imperfections and study different teleportation protocols with the goal of identifying the one with maximal teleportation fidelity. Using a quantum dot with sub-par values of entanglement and photon indistinguishability, we show that the average teleportation fidelity can be raised from below the classical limit to 0.842(14), adopting a polarization-selective Bell state measurement and moderate spectral filtering. Our results, which are backed by a theoretical model that quantitatively explains the experimental findings, loosen the very stringent requirements set on the ideal entangled-photon source and highlight that imperfect quantum dots can still have a say in teleportation-based quantum communication architectures.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 331
Author(s):  
Kosei Takishita ◽  
Alexandros P. Poulidis ◽  
Masato Iguchi

Vulcanian eruptions (short-lived explosions consisting of a rising thermal) occur daily in volcanoes around the world. Such small-scale eruptions represent a challenge in numerical modeling due to local-scale effects, such as the volcano’s topography impact on atmospheric circulation and near-vent plume dynamics, that need to be accounted for. In an effort to improve the applicability of Tephra2, a commonly-used advection-diffusion model, in the case of vulcanian eruptions, a number of key modifications were carried out: (i) the ability to solve the equations over bending plume, (ii) temporally-evolving three-dimensional meteorological fields, (iii) the replacement of the particle diameter distribution with observed particle terminal velocity distribution which provides a simple way to account for the settling velocity variation due to particle shape and density. We verified the advantage of our modified model (Tephra4D) in the tephra dispersion from vulcanian eruptions by comparing the calculations and disdrometer observations of tephra sedimentation from four eruptions at Sakurajima volcano, Japan. The simulations of the eruptions show that Tephra4D is useful for eruptions in which small-scale movement contributes significantly to ash transport mainly due to the consideration for orographic winds in advection.


1925 ◽  
Vol 9 (2) ◽  
pp. 269-284 ◽  
Author(s):  
Otto Glaser

1. For the heart rate in Pterotrachea coronata, intermediate temperatures disclose a thermal increment of 11,200 ±. This value is identical with the one reported by Crozier and Stier for the lamelli-branch, Anodonta. In the pteropod, Tiedemannia neapolitana the same temperatures typically reveal in the heart rate a µ value of 16,200 ± This agrees quantitatively with 16,300 found by Crozier and Stier for the heart of the slug, Limax maximus. 2. At high temperatures the average value of µ for Pterotrachea is 7,300: for Tiedemannia, 7,400. The corresponding averages at the lower limits are 22,000 and 23,000. 3. The great variability found near the edges of the temperature field are explicable in two ways. During intermissions characteristic of high temperatures and occurring also at low, we can assume a restorative process; while at both the upper and lower limits we may, in addition, find that reactions assume control which under ordinary circumstances never do so. Special evidence indicates that the highest temperatures employed, 27°C., and the lowest, 4°C., caused no irreversible changes in mechanism. 4. The theoretical analysis of the experimental facts makes use of Meyerhof's conception of carbohydrate metabolism and projects the cyclical nature of rhythm into the substrate of control. Assuming as a source of energy an original supply of material O, the value of 22,000 ± is assigned provisionally to a mobilization hydrolysis while 11,200 ± and 16,000 ± are attached to oxidative reactions influenced respectively by OH' and possibly Fe, or some other catalyst. The lowest value, 7,300 ± is assumed to indicate a synthetic process (lactic acid → glycogen?), possibly limited by CO2 excretion. In the present state of our knowledge, this distribution and interpretation seems to account reasonably for the experimental facts, but until we know more about the neurogenic controls, is entitled to rank only as an hypothesis.


1962 ◽  
Vol 4 (31) ◽  
pp. 25-52 ◽  
Author(s):  
W. F. Weeks

AbstractTo resolve some of the factors causing strength variation in natural sea ice, fresh water and five different NaCl–H2O solutions were frozen in a tank designed to simulate the one-dimensional cooling of natural bodies of water. The resulting ice was structurally similar to lake and sea ice. The salinity of the salt ice varied from 1‰ to 22‰. Tables of brine volumes and densities were computed for these salinities in the temperature range 0° to −35° C. The ring-tensile strength σ of fresh-water ice was found to be essentially temperature independent from −10° to −30°C., with an average value of 29.6±8.5 kg./cm.2at −10° C. The strength of salt ice at temperatures above the eutectic point (–21.2° C.) significantly decreases with brine volumev;. The σ–axis intercept of this line is comparable to the a values determined for fresh ice indicating that there is little, if any, difference in stress concentration between sea and lake ice as a result of the presence of brine pockets. The strength of ice containing NaCl.2H2O is slightly less than the strength of freshwater ice and is independent of the volume of solid salt and the ice temperature. No evidence was found for the existence of either phase or geometric hysteresis in NaCl ice. The strength of ice at sub-eutectic temperatures, however, is decreased appreciably if the ice has been subjected to temperatures above the eutectic point; this is the result of the redistribution of brine during the warm-temperature period. Short-term cooling produces an appreciable (20 per cent) decrease in strength, in fresh-water and NaCl.2H2O ice. The present results are compared with tests on natural sea ice and it is suggested that the strength of freshwater ice is a limit which is approached but not exceeded by cold sea ice and that the reinforcement of brine pockets by Na2SO4.10H2O is either lacking or much less than previously assumed.


Sign in / Sign up

Export Citation Format

Share Document