Estimating Maintenance Costs for Mixed Higher Speed Passenger and Freight Rail Corridors

Author(s):  
Allan M. Zarembski ◽  
Pradeep Patel

In order to reduce the cost of new intercity passenger rail corridors, the operation of higher speed passenger networks on existing freight corridors is being examined and considered. The issues to be addressed in such operations include the one-time upgrade of the track to allow for this higher speed passenger traffic and the ongoing maintenance costs necessary to maintain this track for the mixed higher speed passenger and freight operations. This latter issue is usually addressed in the access agreements for the corridor, and must include how these costs are to be shared. A recent US Federal Railroad Administration study specifically addressed the issue of “steady state” maintenance costs for mixed use corridors consisting on this class of higher speed passenger operations and concurrent freight operations, to include heavy axle load freight operations. The result of that study was a “planner’s handbook” for estimating these track maintenance costs, as part of the overall analysis of the feasibility and cost of operating higher speed passenger traffic on existing freight corridors. This paper presents the methodology used in the development of the methodology for estimating maintenance costs for mixed higher speed passenger and freight rail corridors (Classes 4, 5 and 6). Specifically, it addresses the estimation of these “steady state” infrastructure maintenance costs for a range of operating scenarios with different combination of passenger and freight traffic densities and operating speeds. These infrastructure costs include track, bridge and building (B&B), and communications and signal (C&S) costs. The resulting costs are presented as a set of cost matrices both in terms of a total cost per track mile and in terms of cost per passenger train mile. The cost matrices cover a range of combinations of traffic and track configuration, with minimum and maximum costs developed for each cell in the cost matrices. The minimum costs are based on maintenance standards geared to typical Class I freight railroad practice, such as where passenger trains currently operate on a freight railroad right of way, while the maximum costs reflect maintenance practices on existing high speed railroad track. This paper provides a description of the analytic models used to generate the costs, and the process by which those models were calibrated to actual cost data to develop costs for a wide range of traffic and track combinations. Sample application of the methodology to include several proposed mixed use corridors is also presented.

Author(s):  
Ruben Brage-Ardao ◽  
Daniel J. Graham ◽  
Richard J. Anderson

Research about service operation costs in the rail sector has usually focused on freight, high-speed, or national passenger rail, but has seldom included the study of the cost of urban rail (metro) rapid transit. This study analyzed the determinants of train service costs for a panel of 24 metro systems worldwide. The study used econometric modeling to assess the relative weight of each factor. Wages and electricity prices and consumption were found to have statistically significant elasticities and evidence of potential substitution effects between factors. Other factors, such as driver productivity, network length, percentage of rolling stock with air conditioning, and rolling stock age, also showed statistically significant elasticities. The study found evidence of strong returns to density and returns to scale in the provision of train service outputs (for example, car kilometers, passenger journeys, and train hours).


Aerospace ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 141
Author(s):  
Nolan M. Uchizono ◽  
Adam L. Collins ◽  
Anirudh Thuppul ◽  
Peter L. Wright ◽  
Daniel Q. Eckhardt ◽  
...  

Electrospray thruster life and mission performance are strongly influenced by grid impingement, the extent of which can be correlated with emission modes that occur at steady-state extraction voltages, and thruster command transients. Most notably, we experimentally observed skewed cone-jet emission during steady-state electrospray thruster operation, which leads to the definition of an additional grid impingement mechanism that we termed “tilted emission”. Long distance microscopy was used in conjunction with high speed videography to observe the emission site of an electrospray thruster operating with an ionic liquid propellant (EMI-Im). During steady-state thruster operation, no unsteady electrohydrodynamic emission modes were observed, though the conical meniscus exhibited steady off-axis tilt of up to 15°. Cone tilt angle was independent over a wide range of flow rates but proved strongly dependent on extraction voltage. For the geometry and propellant used, the optimal extraction voltage was near 1.6 kV. A second experiment characterized transient emission behavior by observing startup and shutdown of the thruster via flow or voltage. Three of the four possible startup and shutdown procedures transition to quiescence within ∼475 μs, with no observed unsteady modes. However, during voltage-induced thruster startup, unsteady electrohydrodynamic modes were observed.


Author(s):  
Giorgio Diana ◽  
Federico Cheli ◽  
Paolo Belforte ◽  
Ferruccio Resta ◽  
Michele Elia ◽  
...  

During 2005, the Italian railway Network Operator (RFI – Rete Ferroviaria Italiana) realized two ETR500 train sets completely dedicated to diagnostic operation on the new high speed lines being built in Italy. During 2006, these train were equipped with a complete acceleration measuring system for test activities on new Italian high speed line Turin – Novara and Rome – Neaples. A complete accelerometric measurement set up has been installed for track investigation. To this aim, the experimental set up is able to identify vertical profile of track geometry, without the limitation to 25 – 30 m, typical of the traditional measuring methods. On the other hand, a tool for predictive identification of hunting instability has been developed. For each run, it is possible to define a map, highlighting all the irregularity wavelengths involved as a function of the space: for high speed application wavelength over 100 m can become really important both for comfort and safety, because they are able to interest low frequency dynamic (around 0.8 – 1.5 Hz). Moreover, with the aim of identifying the beginning of hunting instability, a tool has been developed in order to identify yaw instability vibration mode and thus its non-dimensional damping, just by bogie yaw acceleration measurement. Both this tools have been developed by means of comparison between numerical multi body simulations and experimental measurements. Numerical simulation have been used to simulate a wide range of operating condition, that was of fundamental importance in tuning of such tools. Full evidence on these method will be given in the paper, together with an example of the obtained results.


Author(s):  
Yevheniia Ugnenko ◽  
Olha Tymchenko ◽  
Elena Uzhviieva ◽  
Nataliia Sorochuk ◽  
Gintas Viselga

The article analyses the volume of passenger traffic from 1990 to 2019 for land, water and air transport. From the materials obtained and the experience of the networks of European and world high-speed railways, goals are set. High-speed lines designed exclusively for passenger traffic. This moment plays an important role in reducing the cost of construction, increasing the market and economic profitability. According to the data from the State Statistics Service of Ukraine, it is possible to calculate the passenger flow based on the known parameters for 2020–2032 in the direction of Kiev–Lviv. The design of high-speed lines should meet general requirements aimed at satisfying the basic characteristics of a high-speed railway system, which works in conjunction with the European High-Speed Railway network. The compatibility of the parameters of high-speed lines with the parameters of traditional lines is part of the operational requirements for the gradual introduction of a network of high-speed railways. Possible scenarios to achieve the required compatibility should cover all subsystems.


Author(s):  
Naim Kuka ◽  
Caterina Ariaudo ◽  
Riccardo Verardi ◽  
João Pombo

The rail infrastructure and the track components are expensive assets with long life spans and high maintenance costs. The cost efficiency, performance and punctuality of train operations heavily depend on the track conditions. Ideally, the railway track would be completely smooth providing continuous support to the rolling stock running on it. In practice, however, the infrastructure cannot be installed without irregularities. These defects will increase over time due to the service loads imposed by the railway vehicles. The aim of this work is to use advanced computational tools to predict how the vehicles will respond to changing levels of track defects. For this purpose, the track and its maintenance conditions are characterized in realistic operation scenarios and modelled with detail in order to enable studying the interaction loads that are imposed to the vehicles by the track conditions. The presented methodology enables to identify the track health indexes that have higher influence on the dynamic loads transmitted to the rolling stock. It was observed that the track layout, track irregularities and degradation of the rails have the larger influence on the vehicle-track interaction loads with consequences in terms of safety and maintenance costs. In this way, this work contributes to the development of solutions with technological relevance, giving answer to the industry’s most recent needs in terms of reducing the maintenance costs and decreasing the incidents that cause traffic disruptions, contributing to improve the competitiveness of the railway transport.


Author(s):  
Daniel B. Hess ◽  
Brian D. Taylor ◽  
Allison C. Yoh

Bus rapid transit (BRT) is growing rapidly in popularity because it is viewed widely as an efficient and effective means to improve both transit service and patronage. This paper argues that two distinct views of BRT are emerging: ( a) BRT as a new form of high-speed, rubber-tired, rail-like rapid transit and ( b) BRT as a cost-effective way to upgrade both the quality and image of traditional fixed-route bus service. These two views carry different price tags because the cost of planning, constructing, and operating BRT depends on the complexity of new service features and on rises for BRT that offer service characteristics approaching those of light rail. This study fills a gap in the literature on the costs of BRT by examining in detail component costs–-actual costs for recently implemented services and projected costs for planned new services–-for a sample of BRT systems in North American cities. The study examined BRT costs of 14 planned and recently opened BRT systems to determine how the wide range of BRT service and technology configurations affect costs. The study found that although some of the most successful and popular new BRT systems are high-quality services operating in mixed traffic and implemented at relatively low cost, most BRT projects on the drawing boards are more elaborate, more expensive systems than many currently in service. Most new BRT projects emphasize elaborate LRT-type improvements to lines and stations in one or a few corridors rather than less splashy improvements (such as next-bus monitors, signal preemption, queue-jump lanes, and so forth) affecting more lines and modes in local transit networks. Among the 14 systems examined here, most could be characterized as light rail lite.


2018 ◽  
Vol 230 ◽  
pp. 01014 ◽  
Author(s):  
Anna Shevchenko ◽  
Oleksander Matviienko ◽  
Vitalii Lyuty ◽  
Vladimir Manuylenko ◽  
Mykhailo Pavliuchenkov

The article describes the historical background of the introduction and development of high-speed traffic in the world. The main documents regulating the joint work of high-speed trains of the Commonwealth countries are considered. The main problems of high-speed traffic in Ukraine, and the railway as a whole are studied, analyzed, and described. Recommendations of the company SYSTRA, and the results of developments of Khargiprotrans JSC on the design, implementation and operation of high-speed highways in Ukraine are considered. In conclusion, the current state of the railways, the problems of the current track maintenance has been studied. For Ukraine, first of all, the fourth stage of construction which will connect Lviv with Kiev should be put into operation, based on the analysis of the passenger traffic of the State Committee of Statistics. In this direction, the roadbed and artificial structures are in satisfactory condition. The upper track structure of has sufficient strength. The effect of the profile on the speed of motion is compensated by the power of the locomotive.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012004
Author(s):  
A Winursito ◽  
G N P Pratama

Abstract Magnetic levitation system (MLS) is a nonlinear system that attracts the attention of many researchers, especially control engineers. It has wide range of application such as robotics, high-speed transportation, and many more. Unfortunately, it is not a simple task to control it. Here, we utilize state feedback controller with Linear-Quadratic Regulator (LQR) to regulate the position of a steel-ball in MLS. In addition, we also introduce the precompensator to nullify the steady-state errors. The linearized model, controller, and precompensator are simulated using Matlab. The results and simulation verify that the state feedback controller and precompensator succeed to stabilize the position of steel-ball at the equilibrium for 0.1766 seconds and no steady-state errors.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 002152-002181 ◽  
Author(s):  
Nozad Karim ◽  
Rong Zhou ◽  
Jun Fan

High-speed digital and wireless devices radiate undesired electromagnetic noises that affect the normal operation of other devices causing electromagnetic interference (EMI) problems. Printed circuit board (PCB) and system-level shielding may alleviate inter-system EMI between the PCB board and the outside environment, but does not prevent intra-system EMI within the shielding enclosure. Package and System in Package (SiP) level shielding is often used to minimize intra-system EMI issues. An external metal lid is traditionally employed to prevent noise emission from a device, but the cost and size of this technique makes it unattractive for modern electronics. Conformal shielding is gaining momentum due to its size and height advantages. However, high cost and complexity of the sprayed coating shield prevents it from being used for a wide range of low cost commercial applications. In this paper, an innovative shielding technology with sputtered metal conformal shield is investigated using a specially designed test vehicle. By sputtering a conductive material onto a package, a very thin (typically a few μm) metal layer is constructed on the top and around four sides of the package. This thin sputtered metal layer adds virtually zero penalty to the package size. The cost and complexity of the sputtering process is significantly lower compared to a spraying process. Several types of shielded and unshielded modules were built and extensively tested for both far-field and near-field shielding effectiveness (SE) in a semi-anechoic chamber. The performance of the sputtered conformal shield is compared to that of an unshielded module and the sprayed shield. The measured results show that the sputtered shield performs equally well to a sprayed shield, in far field test, with most measurements better than 40 dB of SE. In near field testing, sputtered shields mostly outperform the sprayed shield, especially when compared in the entire scanned region. A well-designed sputtered conformal shield can, therefore, be a very cost-effective EMI solution for a wide range of packages, such as SiP. Also in the paper, a full wave 3D HFSS model is presented and simulated results for both far and near field are compared with measured data.


Author(s):  
Amy E. Rock ◽  
Amanda Mullett ◽  
Saad Algharib ◽  
Jared Schaffer ◽  
Jay Lee

In the face of renewed interest in High-Speed Rail (HSR) projects, Ohio is one of several states seeking federal funding to relieve pressure on aging, overburdened highway infrastructure by constructing passenger rail routes between major cities. This paper evaluates the creation of a new rail route in Ohio’s 3-C Corridor utilizing GIS. The authors consider two primary cost factors in construction, slope and land cover, to generate alternative least-cost paths. To assess the importance of the cost factors, two separate paths are created using two different weighting methods for the land cover layer. The land cover is weighted first by difficulty of construction, and second by relative acquisition costs. These two paths are then compared against a path selected by the Ohio Hub Project which uses existing track lines, advantages and disadvantages of each are discussed.


Sign in / Sign up

Export Citation Format

Share Document