Influence of Some Emulsifiers in Improving the Biofuel Characteristics

2021 ◽  
Author(s):  
Victorita Radulescu

Abstract Molecules’ characteristics of the active surface, such as low molecular weight fatty acids, asphaltene, and naphthenic acids determine the properties of emulsified fuels. They can interact with surfaces from other oils, water from liquid mixtures, solid surfaces from mechanical systems, or with pipes walls in case of long distances transport. For heavy oils which contain large amounts of asphaltene, these effects are very important. The characteristics of the emulsified fuels are determined mainly by the properties and nature of the emulsifier. In the present paper, some tests for heavy fuels emulsification with monoglycerides and cosurfactants are mentioned, due to their significant contributions in clean fuels combustion. This first proposed solution, presented in this paper is generally preferred, due to its small cost. The second tested solution consists in nonionic polymer obtained from the solid wastes of PET (polyethylene terephthalate) conversion and glycol. The main advantages of this raw material are the PET’s low cost and its large availability. The PET has high content of oxygen so the combustion of emulsified fuels with this type of surfactants assures low pollution emission. The preparation of the nonionic polymer associated with the glycerol recovery as additives for emulsified fuels is also mentioned. As the first stage, the PET transesterification with glycol at 200°C–210°C with ethylene glycol elimination was mentioned. For experiments, ten samples of emulsified fuels with different emulsifying agents were prepared, being tested their influence on fuel characteristics. Some physical properties of the emulsified fuel as the density at 20°C, viscosity at 90°C, flash point, and the freezing points were also determined. If the emulsifier proportion or the water quantity increase in the emulsified fuel the flash point increases also. Other experiments were realized referring to the freezing point and viscosity’s dependence with temperature. Finally, are presented some remarks concerning the proper report between emulsifier and final fuel properties.

2019 ◽  
Vol 32 (1) ◽  
pp. 73-78
Author(s):  
P. Janaki ◽  
R. Sudha ◽  
T.S. Sribharathi ◽  
P. Anitha ◽  
K. Poornima ◽  
...  

The adsorption performance of sulphuric acid treated low cost adsorbent synthesized by using Citrus limettioides peel as an effective raw material for the removal of cadmium(II) from water. The batch adsorption method was carried out to optimize some parameters like contact time, pH and adsorbent dose. The nonlinear isotherm equations were used to calculate the different isotherm constant of five isotherm models namely Freundlich, Langmuir, Dubinin-Radushkevich, Redlich-Peterson and Sips. The Langmuir monolayer adsorption capacity of chemically modified Citrus limettioides peel was found to be 287.60 mg g-1. The negative values of ΔGº and ΔHº showed that the adsorption process is spontaneous and exothermic.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lokesh Kumar ◽  
Susanta Kumar Jana

Abstract Sulfur dioxide is considered as an extremely harmful and toxic substance among the air pollutants emitted from the lignite- and other high-sulfur-coal based power plants, old tires processing units, smelters, and many other process industries. Various types of absorbents and desulfurization technologies have been developed and adopted by the industries to reduce the emission rate of SO2 gas. The present paper focuses on the ongoing advances in the development of varieties of regenerative and non-regenerative absorbents viz., Ca-based, Mg-based, Fe-based, Na-based, N2-based, and others along with various FGD technology, viz., wet, dry or semi-dry processes. Additionally, different types of contactors viz., packed column, jet column, spray tower, and slurry bubble columns along with their significant operational and design features have also been discussed. In the existing or newly installed limestone-based FGD plants, an increasing trend of the utilization of newly developed technologies such as limestone forced oxidation (LSFO) and magnesium-enhanced lime (MEL) are being used at an increasing rate. However, the development of low-cost sorbents, particularly suitable solid wastes, for the abatement of SO2 emission needs to be explored sincerely. Many such wastes cause air pollution by way of entrainment of fine particulate matter (PM), groundwater contamination by its leaching, or brings damage to crops due to its spreading onto the cultivation land. One such pollutant is marble waste and in this work, this has been suggested as a suitable substitute to limestone and cost-effective sorbent for the desulfurization of flue gases. The product of this process being sellable in the market or may be used as a raw material in several industries, it can also prove to be an important route of recycling and reuse of one of the air and water-polluting solid wastes.


2019 ◽  
Vol 10 (01) ◽  
pp. 20-27
Author(s):  
Dian Kurnia Sari ◽  
Rian Ternando

Minyak bumi dievaluasi guna menentukan potensi minyak bumi sebagai bahan baku kilang minyak untuk menghasilkan fraksi yang dikehendaki. Evaluasi yang dilakukan meliputi pengujian sifat umum minyak bumi, klasifikasi minyak bumi dengan distilasi True Boiling Point (TBP) wide cut (pemotongan jarak lebar) serta analisis fraksi kerosin. Fraksi kerosin yang dihasilkan dari primary process dapat diolah menjadi bahan bakar rumah tangga (minyak  tanah) dan bahan bakar lampu penerangan. Selain itu fraksi kerosin juga dapat dioalah menjadi bahan bakar untuk pesawat terbang jenis jet (avtur). Avtur adalah kerosin yang dengan  spesifikasi yang diperketat, terutama mengenai titik uap dan titik beku. Untuk melakukan pengolahan pada minyak bumi perlu diketahui karakteristik dan spesifikasi minyak  bumi (bahan baku) yang akan diolah untuk mengetahui mutu dan manfaat minyak bumi tersebut. Salah satu parameter uji analisis minyak bumi yaitu parameter sifat fisika. Dari data distilasi TBP diperoleh persentase fraksi kerosin Crude Oil 99 PT HS sebesar 29 % vol sedangkan Crude Oil 165 PT RT sebesar 23 % vol. Berdasarkan analisis sifat fisika yang meliputi Specific Gravity, Refractive Index nD20, Freezing Point, Smoke Point, Flash Point “Abel”, Aniline Point, Copper Strip Corrosion, Kinematic Viscosity dan Characterization KUOP. Crude Oil 99 dan Crude Oil 165 memiliki mutu yang baik serta memenuhi spesifikasi produk kerosin maupun produk avtur.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1467 ◽  
Author(s):  
José Ignacio Arranz ◽  
María Teresa Miranda ◽  
Francisco José Sepúlveda ◽  
Irene Montero ◽  
Carmen Victoria Rojas

Brewing industry generates a main residue, brewers’ spent grain (BSG), which has good properties both for use in animal consumption and for thermal use, but contains a very high content of moisture (20–25% dry matter content), so that its elimination or treatment should be immediate, since it can cause degeneration problems of the product. Currently, brewers often supply this material at low cost for use as livestock feed. This solution is not efficiently carried out without reporting too much benefit to the brewers more than to eliminate waste from their facilities. However, BSG is a raw material of interest for application in different areas due to its low price, availability throughout the year and a valuable chemical composition, so it seems necessary to look for an alternative use to give value to these characteristics. In this paper a drying study is carried out in order to establish the foundations for its energy use by thermal of BSG. BSG has been used from a craft brewery located at Badajoz, Spain. Drying analysis was carried out for various temperatures and inlet air flow by means a convective dryer. The properties studied show that BSG can be used for thermal utilization in large installations, being necessary heat drying processes as a pretreatment in order to obtain a biofuel with acceptable efficiency.


2021 ◽  
Vol 5 (1) ◽  
pp. 66
Author(s):  
Panagiotis Angelopoulos ◽  
Maria Georgiou ◽  
Paschalis Oustadakis ◽  
Maria Taxiarchou ◽  
Hakan Karadağ ◽  
...  

Bauxite Metallurgical Residue (BR) is a highly alkaline and very fine-grained by-product of the Bayer process for alumina production. Its huge global annual production has resulted in increasing accumulation of BR, causing deposition problems and serious environmental issues. RM contains oxides and salts of the main elements Fe, Al, Ca, Na, Si, Ti, and rare earths—REEs (Sc, Nd, Y, La, Ce, Ds)—many of which have been categorised by EU as critical metals (CMs). The valorisation of BR as a low-cost secondary raw material and metal resource could be a route for its reduction, introducing the waste into the economic cycle. REEScue constitutes a research project that aims to instigate the efficient exploitation of European bauxite residues, resulting from alumina production from Greece (MYTILINEOS SA), Turkey (ETI Aluminium), and Romania (ALUM SA), containing appreciable concentrations of scandium and REEs, through the development of a number of innovative extraction and separation technologies that can efficiently address the drawbacks of the existing solution. The consortium consists of three alumina producers from Greece (MYTILINEOS SA), Turkey (ETI Aluminium), and Romania (ALUM SA) and two academic partners from Greece (National Technical University of Athens) and Turkey (Necmettin Erbacan University). We present preliminary characterization results of three different BR samples that originate from the three aluminium industries, in respect of bulk chemical analysis (XRF, ICP), mineralogical investigation (XRD), and morphological observation through microscopy.


2021 ◽  
Vol 4 ◽  
Author(s):  
Debomitra Dey ◽  
Jana K. Richter ◽  
Pichmony Ek ◽  
Bon-Jae Gu ◽  
Girish M. Ganjyal

The processing of agricultural products into value-added food products yields numerous by-products or waste streams such as pomace (fruit and vegetable processing), hull/bran (grain milling), meal/cake (oil extraction), bagasse (sugar processing), brewer's spent grain (brewing), cottonseed meal (cotton processing), among others. In the past, significant work in exploring the possibility of the utilization of these by-products has been performed. Most by-products are highly nutritious and can be excellent low-cost sources of dietary fiber, proteins, and bioactive compounds such as polyphenols, antioxidants, and vitamins. The amount of energy utilized for the disposal of these materials is far less than the energy required for the purification of these materials for valorization. Thus, in many cases, these materials go to waste or landfill. Studies have been conducted to incorporate the by-products into different foods in order to promote their utilization and tackle their environmental impacts. Extrusion processing can be an excellent avenue for the utilization of these by-products in foods. Extrusion is a widely used thermo-mechanical process due to its versatility, flexibility, high production rate, low cost, and energy efficiency. Extruded products such as direct-expanded products, breakfast cereals, and pasta have been developed by researchers using agricultural by-products. The different by-products have a wide range of characteristics in terms of chemical composition and functional properties, affecting the final products in extrusion processing. For the practical applications of these by-products in extrusion, it is crucial to understand their impacts on the qualities of raw material blends and extruded products. This review summarizes the general differences in the properties of food by-products from different sources (proximate compositions, physicochemical properties, and functional properties) and how these properties and the extrusion processing conditions influence the product characteristics. The discussion of the by-product properties and their impacts on the extrudates and their nutritional profile can be useful for food manufacturers and researchers to expand their applications. The gaps in the literature have been highlighted for further research and better utilization of by-products with extrusion processing.


2021 ◽  
Author(s):  
revathy m s ◽  
D Murugesan ◽  
Naidu Dhanpal Jayram

Abstract Thin films and Surface Enhanced Raman spectroscopy have a strong bonding towards development of Sensors. From last 4 decades SERS has been used as effective tool for detection of toxic dyes, in food industry and agriculture world. To minimize the cost and fabrication over large surface is the most challenging task in substrate fabrication. In the present work an attempt has been made towards dual coatings, which could act as an effective SERS Substrates. An effective and facile approach of low cost bi-metallic Nanostructured film has been fabricated using thermal evaporation. Using the standard characterization techniques such as FE-SEM and XRD, the obtained films were Rhodamine 6G was used as an analyte for the SERS studies. The detection of R6G was up to 10− 10mol l− 1solution.The present bi-metallic coating can be serves as an excellent SERS active surface and provides a versatile pathway to fabricate anisotropic nanostructure on a glass film.


2021 ◽  
Author(s):  
Yong Cheng ◽  
Longjun Xu ◽  
Chenglun Liu ◽  
Zao Jiang ◽  
Qiyuan Zhang ◽  
...  

Abstract In this work, red mud was used as raw material to extract Al and Fe with hydrochloric acid. The high-efficiency polyaluminum iron chloride (PAFC) flocculant was prepared via adjusting the pH of the leaching solution, the molar ratio of aluminum and iron, and the polymerization temperature. The effect of synthesis and flocculation conditions on the flocculation performance of aged landfill leachate was investigated. The results confirmed that the PAFC prepared at the polymerization pH of 2.5, the Al/Fe molar ratio of 8, and the polymerization temperature of 70 °C had the optimum flocculation effect. The flocculation consequences of PAFC and commercial polyaluminum iron chloride flocculant (CPAFC) under different flocculation conditions were compared. The chemical oxygen demand (COD), UV254, chroma and settlement height of PAFC at flocculant concentration of 60 g/L and solution pH of 6 were 72.2%, 79.2%, 82.9% and 9.5 cm (within 90 min), respectively. PAFC has excellent flocculation performance and can be used as a simple, potentially low-cost wastewater treatment agent in industrial applications.


2015 ◽  
Vol 9 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Myrian Schettino ◽  
José Holanda

Large amounts of waste materials are discarded in the sugarcane industry. This work investigates the reuse of sugarcane bagasse ash waste as an alternative raw material for porcelain stoneware tile bodies, replacing natural quartz by up to 5 wt.%. The tile pieces were fired at 1230 ?C using a fast-firing cycle (< 60min). The technological properties of the fired tile pieces (e.g., linear shrinkage, water absorption, apparent density, and flexural strength) were determined. The sintering process was followed by SEM and XRD analyses. The results show that up to 2.5 wt.% sugarcane bagasse ash waste can be used as a partial replacement for quartz in porcelain stoneware tile (group BIa, ISO 13006 standard), providing excellent technical properties. Hence, its application in high-quality ceramic tile for use in civil construction as a low-cost, alternative raw material could be an ideal means of managing sugarcane bagasse ash waste.


Sign in / Sign up

Export Citation Format

Share Document