Predicting in Vivo Soft Tissue Masses of the Lower Extremity Using Segment Anthropometric Measures and DXA

2005 ◽  
Vol 21 (4) ◽  
pp. 371-382 ◽  
Author(s):  
Jeffrey D. Holmes ◽  
David M. Andrews ◽  
Jennifer L. Durkin ◽  
James J. Dowling

The purpose of this study was to derive and validate regression equations for the prediction of fat mass (FM), lean mass (LM), wobbling mass (WM), and bone mineral content (BMC) of the thigh, leg, and leg + foot segments of living people from easily measured segmental anthropometric measures. The segment masses of 68 university-age participants (26 M, 42 F) were obtained from full-body dual photon x-ray absorptiometry (DXA) scans, and were used as the criterion values against which predicted masses were compared. Comprehensive anthropometric measures (6 lengths, 6 circumferences, 8 breadths, 4 skinfolds) were taken bilaterally for the thigh and leg for each person. Stepwise multiple linear regression was used to derive a prediction equation for each mass type and segment. Prediction equations exhibited high adjustedR2values in general (0.673 to 0.925), with higher correlations evident for the LM and WM equations than for FM and BMC. Predicted (equations) and measured (DXA) segment LM and WM were also found to be highly correlated (R2= 0.85 to 0.96), and FM and BMC to a lesser extent (R2= 0.49 to 0.78). Relative errors between predicted and measured masses ranged between 0.7% and –11.3% for all those in the validation sample (n= 16). These results on university-age men and women are encouraging and suggest that in vivo estimates of the soft tissue masses of the lower extremity can be made fairly accurately from simple segmental anthropometric measures.

2017 ◽  
Vol 33 (5) ◽  
pp. 366-372
Author(s):  
Danielle L. Gyemi ◽  
Charles Kahelin ◽  
Nicole C. George ◽  
David M. Andrews

Accurate prediction of wobbling mass (WM), fat mass (FM), lean mass (LM), and bone mineral content (BMC) of living people using regression equations developed from anthropometric measures (lengths, circumferences, breadths, skinfolds) has previously been reported, but only for the extremities. Multiple linear stepwise regression was used to generate comparable equations for the head, neck, trunk, and pelvis of young adults (38 males, 38 females). Equations were validated using actual tissue masses from an independent sample of 13 males and 13 females by manually segmenting full-body dual-energy x-ray absorptiometry scans. Prediction equations exhibited adjusted R2 values ranging from .249 to .940, with more explained variance for LM and WM than BMC and FM, especially for the head and neck. Mean relative errors between predicted and actual tissue masses ranged from −11.07% (trunk FM) to 7.61% (neck FM). Actual and predicted tissue masses from all equations were significantly correlated (R2  = .329 to .937), except head BMC (R2  = .046). These results show promise for obtaining in-vivo head, neck, trunk, and pelvis tissue mass estimates in young adults. Further research is needed to improve head and neck FM and BMC predictions and develop tissue mass prediction equations for older populations.


1985 ◽  
Vol 249 (1) ◽  
pp. R1-R12 ◽  
Author(s):  
B. K. Slinker ◽  
S. A. Glantz

Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1988 ◽  
Vol 59 (02) ◽  
pp. 273-276 ◽  
Author(s):  
J Dawes ◽  
D A Pratt ◽  
M S Dewar ◽  
F E Preston

SummaryThrombospondin, a trimeric glycoprotein contained in the platelet α-granules, has been proposed as a marker of in vivo platelet activation. However, it is also synthesised by a range of other cells. The extraplatelet contribution to plasma levels of thrombospondin was therefore estimated by investigating the relationship between plasma thrombospondin levels and platelet count in samples from profoundly thrombocytopenic patients with marrow hypoplasia, using the platelet-specific α-granule protein β-thromboglobulin as control. Serum concentrations of both proteins were highly correlated with platelet count, but while plasma β-thromboglobulin levels and platelet count also correlated, there was no relationship between the number of platelets and thrombospondin concentrations in plasma. Serial sampling of patients recovering from bone marrow depression indicated that the plasma thrombospondin contributed by platelets is superimposed on a background concentration of at least 50 ng/ml probably derived from a non-platelet source, and plasma thrombospondin levels do not simply reflect platelet release.


2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dawei Chen ◽  
Zhenguo Zhao ◽  
Lu Chen ◽  
Qinghua Li ◽  
Jixue Zou ◽  
...  

AbstractEmerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Felix G. Gassert ◽  
Florian T. Gassert ◽  
Katja Specht ◽  
Carolin Knebel ◽  
Ulrich Lenze ◽  
...  

Abstract Background Small soft tissue masses are often falsely assumed to be benign and resected with failure to achieve tumor-free margins. Therefore, this study retrospectively investigated the distribution of histopathologic diagnosis to be encountered in small soft tissue tumors (≤ 5 cm) in a large series of a tertiary referral center. Methods Patients with a soft tissue mass (STM) with a maximum diameter of 5 cm presenting at our institution over a period of 10 years, who had undergone preoperative Magnetic resonance imaging and consequent biopsy or/and surgical resection, were included in this study. A final histopathological diagnosis was available in all cases. The maximum tumor diameter was determined on MR images by one radiologist. Moreover, tumor localization (head/neck, trunk, upper extremity, lower extremity, hand, foot) and depth (superficial / deep to fascia) were assessed. Results In total, histopathologic results and MR images of 1753 patients were reviewed. Eight hundred seventy patients (49.63%) showed a STM ≤ 5 cm and were therefore included in this study (46.79 +/− 18.08 years, 464 women). Mean maximum diameter of the assessed STMs was 2.88 cm. Of 870 analyzed lesions ≤ 5 cm, 170 (19.54%) were classified as superficial and 700 (80.46%) as deep. The malignancy rate of all lesions ≤ 5 cm was at 22.41% (superficial: 23.53% / deep: 22.14%). The malignancy rate dropped to 16.49% (20.79% / 15.32%) when assessing lesions ≤ 3 cm (p = 0.007) and to 15.0% (18.18% / 13.79%) when assessing lesions ≤ 2 cm (p = 0.006). Overall, lipoma was the most common benign lesion of superficial STMs (29.41%) and tenosynovial giant cell tumor was the most common benign lesion of deep STMs (23.29%). Undifferentiated pleomorphic sarcoma was the most common malignant diagnosis among both, superficial (5.29%) and deep (3.57%) STMs. Conclusions The rate of malignancy decreased significantly with tumor size in both, superficial and deep STMs. The distribution of entities was different between superficial and deep STMs, yet there was no significant difference found in the malignancy rate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Author(s):  
Jong-Ho Kim ◽  
Hyokyung Yoo ◽  
Seokchan Eun

The anterolateral thigh flap is a classic flap used for various reconstruction defects. However, the flap viability of extended large skin paddles (ie, 240 cm2) was doubted by many surgeons. This study reports successful experience of reconstructing extensive soft tissue defects of lower extremity using extended large skin paddles. Twelve consecutive patients who had undergone reconstruction of defects using an extended anterolateral thigh flap were identified. Patient characteristics (age, sex, defect location, injured structures, and type of flap) and outcome data were analyzed retrospectively. One artery and 2 accompanying veins were anastomosed to vascularize each flap. Follow-up periods ranged from 10 to 91 months postoperatively. The average size of the flaps was 268.75 cm2 (range = 220-391 cm2). All flaps were perforator flaps with one perforator except that 2 perforators were used in 3 patients. Two patients suffered partial flap necrosis of the distal portion with delayed healing. In conclusion, the extended anterolateral thigh flap is a considerable option for massive defects requiring composite tissue coverage. This flap is advantageous for reconstructing various complex defects in the lower extremities, providing a pliable and vascularized tissue to cover exposed extensive defects including tendons, nerves, and bones.


Sign in / Sign up

Export Citation Format

Share Document