scholarly journals Two functionally redundant FK506-binding proteins regulate multidrug resistance gene expression and govern azole antifungal resistance

Author(s):  
Romila Moirangthem ◽  
Kundan Kumar ◽  
Rupinder Kaur

Increasing resistance to antifungal therapy is an impediment to effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen which is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene, CgPDR1, are the most prevalent cause of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure, however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess peptidyl-prolyl isomerase domain, and act redundantly to control CgPDR1 expression, as Cgfpr3Δ4Δ mutant displayed elevated expression of CgPDR1 gene, along with overexpression of its target genes, CgCDR1, CgCDR2 and CgSNQ2, that code for ATP-binding cassette multidrug transporters. Further, CgFpr3 and CgFpr4 are required for maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with a role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with Cgrph1Δ mutant displaying significantly lower basal expression of CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression, and implicate CgFpr in virulence of C. glabrata.

2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


Cartilage ◽  
2020 ◽  
pp. 194760352095814
Author(s):  
Austin V. Stone ◽  
Richard F. Loeser ◽  
Michael F. Callahan ◽  
Margaret A. McNulty ◽  
David L. Long ◽  
...  

Objective Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. Methods Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type ( n = 36) and Epas1+/− ( n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. Results HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/− mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. Conclusion The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise E. Lackey ◽  
Felipe C. G. Reis ◽  
Roi Isaac ◽  
Rizaldy C. Zapata ◽  
Dalila El Ouarrat ◽  
...  

Abstract Insulin resistance is a key feature of obesity and type 2 diabetes. PU.1 is a master transcription factor predominantly expressed in macrophages but after HFD feeding PU.1 expression is also significantly increased in adipocytes. We generated adipocyte specific PU.1 knockout mice using adiponectin cre to investigate the role of PU.1 in adipocyte biology, insulin and glucose homeostasis. In HFD-fed obese mice systemic glucose tolerance and insulin sensitivity were improved in PU.1 AKO mice and clamp studies indicated improvements in both adipose and liver insulin sensitivity. At the level of adipose tissue, macrophage infiltration and inflammation was decreased and glucose uptake was increased in PU.1 AKO mice compared with controls. While PU.1 deletion in adipocytes did not affect the gene expression of PPARg itself, we observed increased expression of PPARg target genes in eWAT from HFD fed PU.1 AKO mice compared with controls. Furthermore, we observed decreased phosphorylation at serine 273 in PU.1 AKO mice compared with fl/fl controls, indicating that PPARg is more active when PU.1 expression is reduced in adipocytes. Therefore, in obesity the increased expression of PU.1 in adipocytes modifies the adipocyte PPARg cistrome resulting in impaired glucose tolerance and insulin sensitivity.


2020 ◽  
Vol 295 (26) ◽  
pp. 8736-8745 ◽  
Author(s):  
Akihiko Sakamoto ◽  
Yusuke Terui ◽  
Takeshi Uemura ◽  
Kazuei Igarashi ◽  
Keiko Kashiwagi

Polyamines regulate gene expression in Escherichia coli by translationally stimulating mRNAs encoding global transcription factors. In this study, we focused on histone acetylation, one of the mechanisms of epigenetic regulation of gene expression, to attempt to clarify the role of polyamines in the regulation of gene expression in eukaryotes. We found that activities of histone acetyltransferases in both the nucleus and cytoplasm decreased significantly in polyamine-reduced mouse mammary carcinoma FM3A cells. Although protein levels of histones H3 and H4 did not change in control and polyamine-reduced cells, acetylation of histones H3 and H4 was greatly decreased in the polyamine-reduced cells. Next, we used control and polyamine-reduced cells to identify histone acetyltransferases whose synthesis is stimulated by polyamines. We found that polyamines stimulate the translation of histone acetyltransferases GCN5 and HAT1. Accordingly, GCN5- and HAT1-catalyzed acetylation of specific lysine residues on histones H3 and H4 was stimulated by polyamines. Consistent with these findings, transcription of genes required for cell proliferation was enhanced by polyamines. These results indicate that polyamines regulate gene expression by enhancing the expression of the histone acetyltransferases GCN5 and HAT1 at the level of translation. Mechanistically, polyamines enhanced the interaction of microRNA-7648-5p (miR-7648-5p) with the 5′-UTR of GCN5 mRNA, resulting in stimulation of translation due to the destabilization of the double-stranded RNA (dsRNA) between the 5′-UTR and the ORF of GCN5 mRNA. Because HAT1 mRNA has a short 5′-UTR, polyamines may enhance initiation complex formation directly on this mRNA.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Olga Rivero-Menendez ◽  
Juan Carlos Soto-Debran ◽  
Narda Medina ◽  
Jose Lucio ◽  
Emilia Mellado ◽  
...  

ABSTRACT Antifungal resistance is one of the major causes of the increasing mortality rates for fungal infections, especially for those caused by Aspergillus spp. A surveillance program was established in 2014 in the Spanish National Center for Microbiology for tracking resistance in the most prevalent Aspergillus species. A total of 273 samples were included in the study and were initially classified as susceptible or resistant according to EUCAST breakpoints. Several Aspergillus cryptic species were found within the molecularly identified isolates. Cyp51 mutations were characterized for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavus sensu stricto strains that were classified as resistant. Three A. fumigatus sensu stricto strains carried the TR34/L98H resistance mechanism, while two harbored G54R substitution and one harbored the TR46/Y121F/T289A mechanism. Seventeen strains had no mutations in cyp51A, with ten of them resistant only to isavuconazole. Three A. terreus sensu stricto strains harbored D344N substitution in cyp51A, one of them combined with M217I, and another carried an A249G novel mutation. Itraconazole-resistant A. flavus sensu stricto strains harbored P220L and H349R alterations in cyp51A and cyp51C, respectively, that need further investigation on their implication in azole resistance.


Author(s):  
Shigenobu Yazawa ◽  
Koji Obata ◽  
Akio Iio ◽  
Masafumi Koide ◽  
Mitsuhiro Yokota ◽  
...  

2020 ◽  
Vol 160 (2) ◽  
pp. 63-71
Author(s):  
Yunxiao Li ◽  
Xugang Shi ◽  
Xintong Cai ◽  
Yongsheng Zhu ◽  
Yuanyuan Chen ◽  
...  

DCC netrin 1 receptor (DCC) affects the structure and function of the dopamine circuitry, which in turn affects the susceptibility to developing addiction. In a previous study, we found that single nucleotide polymorphism (SNP) rs12607853 in the 3′ untranslated region (3′-UTR) of DCC was significantly associated with heroin addiction. In the current study, we first used bioinformatics prediction to identify the DCC rs12607853 C allele as a potential hsa-miR-422a and hsa-miR-378c target site. We then used vector construction and dual-luciferase reporter assays to investigate the targeting relationship of DCC rs12607853 with hsa-miR-422a and hsa-miR-378c. The dual-luciferase reporter gene assay confirmed that the C allele of rs12607853 in combination with hsa-miR-422a led to repressed dual-luciferase gene expression. Moreover, gene expression assays disclosed that hsa-miR-422a inhibited DCC expression at both the mRNA and protein levels. We also found that morphine inhibited the expression of hsa-miR-422a but increased the expression of DCC mRNA, and this change in the expression of hsa-miR-422a could not be reversed by naloxone, which suggested that the role of DCC in opioid addiction might be regulated by hsa-miR-422a. In summary, this study improves our understanding of the role of hsa-miR-422a and identifies the genetic basis of rs12607853, which might contribute to the discovery of new biomarkers or therapeutic targets for opioid addiction.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2898-2898
Author(s):  
Michael Lübbert ◽  
Michael Stock ◽  
Tobias Berg ◽  
Manfred Fliegauf

Abstract The chromosomal translocation (8;21) fuses the AML1 gene on chromosome 21 and the ETO gene on chromosome 8 in human acute myeloid leukemias, resulting in expression of the chimeric transcription factor AML1/ETO. AML1/ETO-mediated dysregulation of target genes critical for hematopoietic differentiation and proliferation is thought to contribute to the leukemic phenotype. Several mechanisms, including recruitment of histone deacetylases (HDACs) to AML1 target genes, may be responsible for altered gene expression. We used an ecdysone-inducible expression system in the human monoblastic U-937 cell line to isolate genes that were differentially expressed upon induction of AML1/ETO expression. By representational difference analysis (cDNA-RDA), we identified 26 genes whose expression levels were significantly modulated following AML1/ETO induction for 48 hours. None of these genes has previously been described as a target of AML1, ETO or AML1/ETO. One gene down-regulated by AML1/ETO in vitro, Williams Beuren Syndrome critical region 5 (WBSCR5), was expressed in primary t(8;21) negative AML blasts but not in primary t(8;21) positive AML blasts, strongly implying a role of this gene in the phenotype of t(8;21) positive AML. WBSCR5 is part of the critical region located on chromosome 7q11.23 that is deleted in the Williams Beuren syndrome (OMIM 194050), an autosomal dominant disorder comprising vascular, neurological, behavioral and skeletal abnormalities. WBSCR5 has recently been shown to have a role in the activation and differentiation of B cells (Brdicka et al., J. Exp. Med. 196:1617, 2002) and thus was also termed Non-T cell activation linker.. WBSCR5 as well as seven other regulated genes were further studied using all-trans-retinoic acid (ATRA), an inducer of differentiation of U-937 cells, and Trichostatin A (TSA), an HDAC inhibitor. WBSCR5 and two other out of these eight genes were regulated during ATRA-induced monocytic differentiation of U-937 cells, however none of them antagonistically, upon both ATRA-treatment and AML1/ETO-induction. Since repression of WBSCR5 might be mediated by recruitment of HDACs through the fusion gene, cells were treated with TSA prior to transgene induction. However, the AML1/ETO-associated dysregulation of WBSCR5 gene expression (as well as that of the other seven genes studied) was not mediated by a TSA-sensitive mechanism. The identified genes provide a useful model to study the mechanism by which the AML1/ETO fusion protein exerts its function in transcriptional dysregulation in acute myeloid leukemia. The role of WBSCR5 in malignant hematopoietic cells warrants further study.


PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lijun Zhang ◽  
Chunyan Li ◽  
Fang Wang ◽  
Shenghua Zhou ◽  
Mingjun Shangguan ◽  
...  

PPARαagonist clofibrate reduces cholesterol and fatty acid concentrations in rodent liver by an inhibition of SREBP-dependent gene expression. In present study we investigated the regulation mechanisms of the triglyceride- and cholesterol-lowering effect of the PPARαagonist clofibrate in broiler chickens. We observed that PPARαagonist clofibrate decreases the mRNA and protein levels of LXRαand the mRNA and both precursor and nuclear protein levels of SREBP1 and SREBP2 as well as the mRNA levels of the SREBP1 (FASNandGPAM) and SREBP2 (HMGCRandLDLR) target genes in the liver of treated broiler chickens compared to control group, whereas the mRNA level ofINSIG2, which inhibits SREBP activation, was increased in the liver of treated broiler chickens compared to control group. Taken together, the effects of PPARαagonist clofibrate on lipid metabolism in liver of broiler chickens involve inhibiting transcription and activation of SREBPs and SREBP-dependent lipogenic and cholesterologenic gene expression, thereby resulting in a reduction of the triglyceride and cholesterol levels in liver of broiler chickens.


Sign in / Sign up

Export Citation Format

Share Document