Effects of nitrogen fertilizer, shade, and the removal of new growth on longevity of overwintering bog ericad leaves

1980 ◽  
Vol 58 (16) ◽  
pp. 1737-1743 ◽  
Author(s):  
R. J. Reader

Bog ericads, such as Labrador tea (Ledum groenlandicum), bog laurel (Kalmia polifolia), and leatherleaf (Chamaedaphne calyculata), retain individual leaves for two growing seasons in southern Ontario, presumably to facilitate nutrient movement between overlapping leaf cohorts. The objective of this study was to evaluate the effects of nutrient availability, shade, and the removal of new growth on the longevity of leaves during their second growing season. Longevity was extended significantly (p < 0.05) by removing new growth, but not by shading leaves (p > 0.05). The addition of nitrogen fertilizer increased only C. calyculata longevity. Interspecific variation in treatment effects appeared to be related to the positions occupied by the three species on environmental gradients. None of the experimentally treated leaves survived past the end of their second growing season, with the magnitude of treatment effects ranging from a reduction in longevity of 10 days to an increase of 25 days.

1978 ◽  
Vol 56 (10) ◽  
pp. 1248-1261 ◽  
Author(s):  
R. J. Reader

Individual leaves of three bog ericads, leatherleaf (Chamaedaphne calyculata), bog laurel (Kalmia polifolia), and Labrador tea (Ledum groenlandicum), were retained for a maximum of two growing seasons in a peat bog in southern Ontario. The premature loss of mature leaves, resulting from artificial defoliation, significantly reduced the growth of new shoots of L. groenlandicum and K. polifolia but not of C. calyculata. Defoliation effects were directly proportional to the normal retention time for overwintering leaves. Mature leaves probably translocate photosynthate, nitrogen, and phosphorus to other plant parts. This would explain why leaf dry weights were greatest at the start, rather than at the end, of the leaves' second growing season. Net photosynthetic rates decreased with leafage, but in terms of leaf nitrogen content, new and old leaves fixed equal amounts of carbon.


1979 ◽  
Vol 92 (1) ◽  
pp. 251-254 ◽  
Author(s):  
E. R. Page

As a nitrogen fertilizer for vegetable production in Britain ammonia has been used mainly for bruasels sprouts (Page, Tatham & Wood, 1974; Page, 1975a; Page, Wood & Case, 1976), and leeks (Page & Williams, 1977). These crops with long growing seasons allow considerable latitude in time of application of the ammonia. Summer and autumn maturing cauliflowers have not only a short growing season, but also have a physiological control of curd formation which appears to be insensitive to nitrogen supply (Salter, 1969; Salter & Fradgley, 1969). They are also usually transplanted into the field, and the root system is therefore restricted for at least part of the growing season. It is therefore desirable to know if the roots would reach the injected nitrogen in time, as, until the ammonia becomes nitrified, nitrogen movement in the soil is small (Page, 19756). Thus, time of application of the ammonia was considered likely to be important.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


1994 ◽  
Vol 24 (5) ◽  
pp. 954-959 ◽  
Author(s):  
L.J. Samuelson ◽  
J.R. Seiler

The interactive influences of ambient (374 μL•L−1) or elevated (713 μL•L−1) CO2, low or high soil fertility, well-watered or water-stressed treatment, and rooting volume on gas exchange and growth were examined in red spruce (Picearubens Sarg.) grown from seed through two growing seasons. Leaf gas exchange throughout two growing seasons and growth after two growing seasons in response to elevated CO2 were independent of soil fertility and water-stress treatments, and rooting volume. During the first growing season, no reduction in leaf photosynthesis of seedlings grown in elevated CO2 compared with seedlings grown in ambient CO2 was observed when measured at the same CO2 concentration. During the second growing season, net photosynthesis was up to 21% lower for elevated CO2-grown seedlings than for ambient CO2-grown seedlings when measured at 358 μL•L−1. Thus, photosynthetic acclimation to growth in elevated CO2 occurred gradually and was not a function of root-sink strength or soil-fertility treatment. However, net photosynthesis of seedlings grown and measured at an elevated CO2 concentration was still over 2 times greater than the photosynthesis of seedlings grown and measured at an ambient CO2 concentration. Growth enhancement by CO2 was maintained, since seedlings grown in elevated CO2 were 40% larger in both size and weight after two growing seasons.


2021 ◽  
pp. 1-15
Author(s):  
Sara Bernardo ◽  
Lia-Tânia Dinis ◽  
Nelson Machado ◽  
Ana Barros ◽  
Marta Pitarch-Bielsa ◽  
...  

BACKGROUND: Kaolin particle-film application is a well-known strategy to avoid fruit damage. However, its putative role in balancing berry ripening under a changing climate remains poorly explored. OBJECTIVE: We assessed kaolin treatment effect on several ripening berry components, hormonal balance and oenological parameters of the field-grown Touriga-Franca (TF) and Touriga–Nacional (TN) grapevine varieties at veraison (EL35) and ripening (EL38) during two growing seasons (2017 and 2018). RESULTS: Under the adverse summer conditions (two heatwave events) of 2017, kaolin application increased 211.2 %and 51.4 %the salicylic acid (SA) and abscisic acid (ABA) levels in TF berries at EL38, while no significant differences were observed in TN. Conversely, TF, and TN kaolin treated berries showed lower SA and ABA accumulation in 2018, respectively. Tartaric acid content increased about 17.2 %, and 24.2 %in TF and TN treated berries at stage EL35 in the 2017 growing season. Though kaolin treatment had no consistent effect on anthocyanins accumulation, flavonoids, ortho-diphenols and tannins increased in kaolin treated grapevines in 2017. CONCLUSIONS: This study highlights the key role of climate in triggering ripening related processes and fruit quality potential. Nevertheless, kaolin treated grapevines displayed an improved response to oxidative stress signals by increasing secondary metabolites accumulation in warm vintages. Kaolin application promoted different varietal responses, with a possible ripening delaying effect in TF, reinforcing its efficiency in alleviating severe summer stress impacts.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1726
Author(s):  
Nasr H. Gomaa ◽  
Ahmad K. Hegazy ◽  
Arafat Abdel Hamed Abdel Latef

Perennial shrub-annual plant interactions play key roles in desert regions influencing the structure and dynamics of plant communities there. In the present study, carried out in northwestern Saudi Arabia, we examined the effect of Haloxylon salicornicum shrubs on their associated understory annual species across four consecutive growing seasons, along with a record of the seasonal rainfall patterns. We measured density and species richness of all the annual species in permanent quadrats located beneath individual shrubs, as well as in the spaces between shrubs. During wet growing season H. salicornicum shrubs significantly enhanced the density and species richness of sub-canopy species, whereas in the relatively dry seasons they exerted negative effects on the associated species. In all growing seasons, the presence of shrubs was associated with enhanced soil properties, including increased organic carbon content, silt + clay, and levels of nutrients (N, P and K). Shrubs improved soil moisture content beneath their canopies in the wet growing season, while in the dry seasons they had negative effects on water availability. Differences in effects of H. salicornicum on understory plants between growing seasons seem due to the temporal changes in the impact of shrubs on water availability. Our results suggest the facilitative effects of shrubs on sub-canopy annuals in arid ecosystems may switch to negative effects with increasing drought stress. We discuss the study in light of recent refinements of the well-known “stress-gradient hypothesis”.


1979 ◽  
Vol 57 (9) ◽  
pp. 997-999 ◽  
Author(s):  
R. J. Reader

In laboratory freezing trials, cold hardiness of six types of bog ericad flowers differed significantly (i.e., Chamaedaphne calyculata > Andromeda glaucophylla > Kalmia polifolia > Vaccinium myrtilloides > Ledum groenlandicum > Vaccinium macrocarpon) at air temperatures between −4 and −10 °C but not at temperatures above −2 °C. At the Luther Marsh bog in southern Ontario, low temperatures (−3 to −7 °C) would select against May flowering by the least cold hardy ericads. Availability of pollinators, on the other hand, would encourage May flowering by the most cold hardy species. Presumably, competition for insect pollinators has promoted the diversification of bog ericad flowering peaks, while air temperature, in conjunction with flower cold hardiness, determined the order in which flowering peaks were reached.


1996 ◽  
Vol 36 (5) ◽  
pp. 555
Author(s):  
ID Black ◽  
CB Dyson ◽  
AR Fischle

In 11 experiments over 6 seasons the herbicide sethoxydim was applied to Machete, Spear and Blade wheat cultivars in the absence or near absence of weeds (10 sites) or where the weeds were controlled by selective herbicides (1 site), in the cropping area north of Adelaide, South Australia. The rates applied included 9-47 g a.i./ha at the 2-3 leaf growth stage and 9-74 g a.i./ha at early tillering. Except for the very long growing season of 1992, there was a highly significant positive linear correlation between the number of degree days in the growing season at each experimental site and relative mean yield increase of these sethoxydim treatments. Yield increases ranged from nil in growing seasons of about 1000 degree days to 32% in a growing season of 1480 degree days, with a median of 8% over the experiments.


Sign in / Sign up

Export Citation Format

Share Document