A TAXONOMIC STUDY OF SOME GRAM-NEGATIVE, NON-FERMENTING BACTERIA

1963 ◽  
Vol 9 (4) ◽  
pp. 499-507 ◽  
Author(s):  
Franklin P. Koontz ◽  
John E. Faber

An investigation of 110 cultures of Gram-negative bacteria which failed to produce acid in conventional carbohydrate media was undertaken to determine their taxonomic position.Thirty-seven strains had peritrichous flagella, 30 were monotrichous, 8 were lophotrichous, 3 were either monotrichous or lophotrichous, and 32 strains were non-flagellated.Flagella stains and reaction in Hugh and Leifson"s O/F medium were used to divide the strains into general groups.Sixty-five strains were inert in O/F medium. Forty of these resembled the general description for the genus Alcaligenes. Seventeen strains resembled Alcaligenes biochemically, but were either monotrichously or lophotrichously flagellated. Several strains resembled Vibrio percolans.Nine strains resembled Achromobacter biochemically by oxidatively utilizing pentoses only.Twenty-three strains resembled Pseudomonas aeruginosa. All produced acid oxidatively in the O/F medium.Thirteen strains produced acid fermentatively in O/F medium.Serological studies indicated antigenic heterogeneity. Several strains shared flagellar and somatic antigens, while others were related by either somatic or flagellar components. Seventy-eight strains did not react with any somatic antisera and 54 strains did not react with any flagellar antisera. There was little correlation between antigenicity and biochemical or morphological characteristics.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jannette Pirzadian ◽  
Susan P. Harteveld ◽  
Shanice N. Ramdutt ◽  
Willem J. B. van Wamel ◽  
Corné H. W. Klaassen ◽  
...  

Abstract In hospitals, Verona Integron-encoded Metallo-beta-lactamase (VIM)-positive Pseudomonas aeruginosa may colonize sink drains, and from there, be transmitted to patients. These hidden reservoirs are difficult to eradicate since P. aeruginosa forms biofilms that resist disinfection. However, little is known on the composition of these biofilms. Therefore, culturomics was used for the first time to investigate the viable microbiota in four hospital sink drain samples with longstanding VIM-positive P. aeruginosa drain reservoirs (inhabited by high-risk clone, sequence type ST111), and four drain samples where VIM-positive P. aeruginosa was not present. Microbial load and composition varied between samples, yielding between 471–18,904 distinct colonies and 8–20 genera. In two VIM-positive drain samples, P. aeruginosa was the most abundantly-isolated microorganism, and found in combination with other Gram-negative bacteria, Citrobacter, Enterobacter, or Stenotrophomonas. P. aeruginosa was in low abundance in the other two VIM-positive samples, and found with Gram-positive cocci (Enterococcus and Staphylococcus) or Sphingomonas. In VIM-negative drain samples, high abundances of Gram-negative non-fermenting bacteria, including Acinetobacter, non-aeruginosa Pseudomonas spp., Acidovorax, Chryseobacterium, Flavobacterium, and Sphingobium, as well as Candida, were cultured. Although additional experiments are needed to draw more firm conclusions on which microorganisms enable or inhibit VIM-positive P. aeruginosa persistence, our data provide unique insights into the microbial compositions of sink drain inlets.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


1988 ◽  
Vol 34 (1) ◽  
pp. 88-92 ◽  
Author(s):  
D. Velez ◽  
J. D. Macmillan ◽  
L. Miller

Thirteen murine hybridomas capable of producing monoclonal antibodies to somatic antigens on Bradyrhizobium japonicum were developed and an indirect enzyme-linked immunosorbent assay was used to test reactivity of the antibodies against 20 strains of B. japonicum. Although polyclonal antisera from mice immunized with strains of B. japonicum reacted with bacterial cells of all 20 strains, individual monoclonals were more specific. Some antibodies reacted with as few as 2 and one with as many as 11 strains. On the basis of reactivity with the set of 13 monoclonal antibodies, the 20 strains of B. japonicum could be divided arbitrarily into five groups. Three of five monoclonal antibodies tested reacted with bacteroids taken directly from soybean nodules. One monoclonal bound to cells of five species of Rhizobium, but none of the 13 reacted with gram-negative bacteria representing six other genera. Treatment of cells with reagents and heat indicated the chemical nature of the antigens to five of the monoclonals. Antigen reactive with one antibody was destroyed by periodate oxidation indicating that it was a polysaccharide. Two antigens were probably proteins as they could be digested by trypsin and denatured by heat. Two others were inactivated by all three treatments suggesting they were glycoproteins.


2020 ◽  
Author(s):  
Hanh N. Lam ◽  
Tannia Lau ◽  
Adam Lentz ◽  
Jessica Sherry ◽  
Alejandro Cabrera-Cortez ◽  
...  

ABSTRACTAntibiotic resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from non-pathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs, but do not inhibit bacterial growth. Here we describe identification of an isomer, 4EpDN, that is two-fold more potent (IC50 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated Twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injestisome T3SS. 4EpDN reduced the number of T3SS basal bodies detected on the surface of Y. enterocolitica, as visualized using a fluorescent derivative of YscD, an inner membrane ring with low homology to flagellar protein FliG. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.IMPORTANCETraditional antibiotics target both pathogenic and commensal bacteria, resulting in a disruption of the microbiota, which in turn is tied to a number of acute and chronic diseases. The bacterial type III secretion system (T3SS) is an appendage used by many bacterial pathogens to establish infection, but is largely absent from commensal members of the microbiota. In this study, we identify a new derivative of the cyclic peptomer class of T3SS inhibitors. These compounds inhibit the T3SS of the nosocomial ESKAPE pathogen Pseudomonas aeruginosa and enteropathogenic Yersinia and Salmonella. The impact of cyclic peptomers is specific to the T3SS, as other bacterial secretory systems are unaffected. Importantly, cyclic peptomers completely block replication of Chlamydia trachomatis, the causative agent of genital, eye, and lung infections, in human cells, a process that requires the T3SS. Therefore, cyclic peptomers represent promising virulence blockers that can specifically disarm a broad spectrum of Gram-negative pathogens.


Author(s):  
Yeasmin Akter Moonnee ◽  
Md Javed Foysal ◽  
Abu Hashem ◽  
Md Faruque Miah

Abstract Background The leather industry generates huge volume of waste each year. Keratin is the principal constituents of this waste that is resistant to degradation. Some bacteria have the ability to degrade keratin through synthesis of a protease called keratinase that can be used as sources of animal feed and industrial production of biodiesel, biofertilizer, and bioplastic. Majority of the studies focused on keratin degradation using gram-positive bacteria. Not much of studies are currently available on production of keratinase from gram-negative bacteria and selection of best parameters for the maximum production of enzyme. The aim of this study was to isolate and characterize both groups of bacteria from soil for keratinase and optimize the production parameters. Results A total of 50 isolates were used for initial screening of enzyme production in skim milk, casein, and feather meal agar. Out of 50, five isolates showed significantly higher enzyme production in preliminary screening assays. Morphological and biochemical characterization revealed 60% of the isolates as gram-negative bacteria including two highest enzyme-producing isolates. The isolates were identified as Pseudomonas aeruginosa through sequencing of 16S rRNA gene. Maximum production of enzyme from P. aeruginosa YK17 was achieved with 2% chicken feather, beef extract, and ammonium nitrate as organic and inorganic nitrogen sources and glucose as a carbon source. Further analysis revealed that 3% inoculum, 40 °C growth temperature and 72-h incubation, resulted in maximum production of keratinase. Conclusion The overall results showed significant higher production of enzyme by the P. aeruginosa YK17 that can be used for the degradation of recalcitrant keratin waste and chemical dehairing in leather industries, thereby preventing environmental pollution.


KYAMC Journal ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 87-90
Author(s):  
Abdullah Akhtar Ahmed ◽  
Nusrat Akhtar Juyee ◽  
SM Ali Hasan

Background: Colistin-resistant Gram-negative bacteria is a rapidly emerging global threatgenerated a sense of public alarm. Objective: To combat this challenge a study was designedto evaluate the fast spreading infections by colistin-resistant pathogens in the tertiary care rural hospital of Bangladesh. Materials and Methods: To study isolation ofpathogenic gram-negative bacilli,clinical sample (n-640) of hospitalized patients of Khwaja Yunus Ali Medical College Hospital in Enayetpur, Bangladesh during the 1st quarter of the year 2019 were used. The bacterial isolates were screened for meropenem and colistin-resistance. Results: A total of 156 bacterial isolates were studied which included Escherichia coli (n-112), Klebsiella pneumoniae (n-14), Pseudomonas aeruginosa (n-27), and Salmonella typhi (n-3). Antibiotic sensitivity testing showed that 32/156(20%) and 119/156 (76%) isolates were resistant to meropenem and colistin, respectively. whereas 50/156 (32%) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, pseudomonas aeruginosa, and Salmonella typhi isolates respectivelywere 112/156 (72%), 14/156 (9%). 27/156 (17%), and 3/156 (2%). Conclusion: Colistin is typically used as salvage therapy, or last-line treatment, for MDR gramnegative infections.But there is worrisome therapeutic scenario in our study finding of colistin resistance is 76% in Gram-negative bacteria of the clinical isolates. The restricted and rational use of colistin drug is the need of hour. KYAMC Journal Vol. 11, No.-2, July 2020, Page 87-90


Author(s):  
Kumud Bala ◽  
Ridhima Wadhwa ◽  
Rachana Bohra

Objective: The purpose of the present study was to identify the fermenting and non-fermenting gram negative bacteria from the tertiary care hospital.Methods: The conventional method of identification by biochemical analysis and antibiotic susceptibility test was performed by Kirby-Bauer disc diffusion method. Furthermore, analysis of microbes was done by Vitek-2.Results: 424strains of lactose fermenting and non-lactose fermenting gram negative bacilli were isolated from 3097 clinical samples. From the total lactose fermenting bacteria Escherichia coli was the predominant isolate accounting for 50.94% specimens, followed by Klebsiella pneumonia 27.59% and Enterobacter 0.47%. From the total non-lactose fermenting gram negative bacilli Acinetobacter baumannii was the predominant isolate accounting for 12.73% specimens followed by Pseudomonas aeroginosa 6.13%, other isolates were Stenotrophomonas maltophilia 1.17% , Burkholderia cepacia 0.94%. In the present study male were more infected than female. The study also showed that lactose fermenting bacteria were more infectious than non lactose-fermenting bacteria and isolates were from urine samples.Conclusion: Both Non-Lactose Fermenting Gram Negative Bacilli and Lactose Fermenting Gram Negative Bacilli were found to be major contaminants, and are important pathogenic bacteria causing wide range of infections in the tertiary care hospital.Keywords: Lactose fermenting gram negative bacteria, Vitek-2, Tertiary Care Hospital, Kirby-Bauer Disc Diffusion, Lactose non-fermenting gram negative bacteria  


2008 ◽  
Vol 3 (7) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Velizar Gochev ◽  
Katrin Wlcek ◽  
Gerhard Buchbauer ◽  
Albena Stoyanova ◽  
Anna Dobreva ◽  
...  

In the present study we evaluated the composition and antimicrobial activity of various rose oils from Bulgaria, Turkey, Morocco, Iran and China against three Gram-positive, three Gram-negative bacteria and two yeasts. The composition of the studied essential oils was determined by GC and GC/MS. Citronellol was the major compound of all the oil samples: 31.7% (Chinese oil); 32.6% (Iranian oil); 33.6% (Moroccan oil); 34.9% (Bulgarian oil) and 38,7 % (Turkish oil). For the Bulgarian oil we could determine the highest activity against all microorganisms. Bacillus cereus ATCC 11778 was the most sensitive strain to Bulgarian rose oil (MCC 128 μg/mL) and Pseudomonas aeruginosa ATCC 9627 and P. fluorescens were more resistible strains (MCC 4096 μg/mL). Antimicrobial activity of rose oils is mainly due to the action of oxygenated acyclic monoterpenes citronellol, geraniol, nerol and linalool, their acetate derivatives and the phenolic compound eugenol.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


1966 ◽  
Vol 12 (1) ◽  
pp. 105-108 ◽  
Author(s):  
K. Jane Carson ◽  
R. G. Eagon

Electron micrographs of thin sections of normal cells of Pseudomonas aeruginosa showed the cell walls to be convoluted and to be composed of two distinct layers. Electron micrographs of thin sections of lysozyme-treated cells of P. aeruginosa showed (a) that the cell walls lost much of their convoluted nature; (b) that the layers of the cell walls became diffuse and less distinct; and (c) that the cell walls became separated from the protoplasts over extensive cellular areas. These results suggest that the peptidoglycan component of the unaltered cell walls of P. aeruginosa is sensitive to lysozyme. Furthermore, it appears that the peptidoglycan component is not solely responsible for the rigidity of the cell walls of Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document