Favorable effects in vitro and in vivo of two clinical isolates of Pseudomonas aeruginosa on nutritionally deficient Staphylococcus aureus strains

1973 ◽  
Vol 19 (8) ◽  
pp. 973-981 ◽  
Author(s):  
T. Gadbois ◽  
J. De Repentigny ◽  
L. G. Mathieu

We have studied aspects of interbacterial ecology with nutritionally dependent Staphylococcus aureus strains; they were grown in association with Pseudomonas aeruginosa in systems of mixed cultures and infections in vitro in a semisynthetic medium and in vivo in mouse peritoneal cavity and rabbit skin. In mixed cultures and in P. aeruginosa culture filtrates, thymine and tryptophan deficiencies in staphylococci were partly overcome. This is probably because P. aeruginosa supplied the essential metabolites required to ensure growth; however, other metabolic activities could also be involved. Other experiments showed that the sensitivity of thymineless staphylococci to nucleoside inhibitions was alleviated. In mixed infections with P. aeruginosa, the S. aureus thymineless strain has shown a greater ability to survive in the peritoneal cavity of mice than when injected alone, even when one species was injected after the other with different doses of bacteria. The examination of the liquid from the peritoneal cavity of infected mice by fluorescence microscopy after fluorochroming with acridine orange or auramine O has revealed that Pseudomonas endotoxin seems to damage leucocytes and consequently reduces the phagocytosis of Staphylococcus cells.Necrosis in rabbit skin was mainly due to S. aureus when both species were injected together intradermally; the thymineless strain was less harmful than the parent strain.It seems that survival and even growth of nutritionally dependent strains of a bacterial species can be favored by the metabolic activities of another species in mixed cultures and infections, in this instance S. aureus by P. aeruginosa. This phenomenon among others could be a determinant of bacterial pathogenicity for nutritionally dependent pathogenic bacteria; thus associated organisms could determine the effective pathogenicity of nutritionally dependent bacteria by contributing essential nutrilites at the site where infection is initiated.

2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


1972 ◽  
Vol 18 (10) ◽  
pp. 1531-1541 ◽  
Author(s):  
J. de Repentigny ◽  
L. G. Mathieu ◽  
T. Gadbois

Staphylococcus aureus and Pseudomonas aeruginosa are often found in succession or in association in infections. To study experimentally their interactions, we have used systems of growth or survival of mixed cultures of both species in vitro in a semisynthetic medium and in vivo in the peritoneal cavity of mice. Conditions for maximum growth in vitro of both species in mixed cultures are about similar to those in pure culture when the pH is maintained between 6.0 and 7.3. The inhibition of S. aureus growth by some antimetabolites or antibiotics, e.g., 5-methyltryptophan and D-cycloserine, is antagonized in mixed cultures. Staphylococcus coagulase, DNase, and alpha toxin were present either in mixed cultures or after mixing pure culture supernatants of both species, but P. aeruginosa slime was not observed in these conditions. In vivo, the survival of S. aureus seemed greater in mixed infections with P. aeruginosa than in those with S. aureus alone. In our systems, S. aureus may have benefited from the presence of P. aeruginosa whereas the reverse was not observed. These observations on interbacterial ecology could help to explain the importance and the behavior of some species at the initiation of pyogenic infections, either their interactions or their selection.


2022 ◽  
Vol 82 ◽  
Author(s):  
I. D. C. Galo ◽  
R. P. Prado ◽  
W. G. Dos Santos

Abstract The ability of pathogenic bacteria acquire resistance to the existing antibiotics has long been considered a dangerous health risk threat. Currently, the use of visible light has been considered a new approach to treat bacterial infections as an alternative to antibiotics. Herein, we investigated the antimicrobial effect of two range of visible light, blue and red, on Staphylococcus aureus and Pseudomonas aeruginosa, two pathogenic bacterial commonly found in healthcare settings-acquired infections and responsible for high rate of morbidity and mortality. Bacterial cultures were exposed to blue or red light (470 nm and 660 nm) provided by light-emitting diodes - LED. The fluencies and irradiance used for blue and red light were 284.90 J/cm2, 13.19 mW/cm2 and 603.44 J/cm2, 27.93 mW/cm2 respectively. Different experimental approaches were used to determine the optimal conditions of light application. Only exposure to blue light for 6 hours was able to inhibit about 75% in vitro growth of both bacterial species after 24 hours. The surviving exposed bacteria formed colonies significantly smaller than controls, however, these bacteria were able to resume growth after 48 hours. Blue light was able to inhibit bacterial growth upon inoculation in both saline solution and BHI culture medium. We can conclude that blue light, but not red light, is capable of temporarily retarding the growth of gram negative and gram positive bacteria.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


2019 ◽  
Author(s):  
Clémentine Laffont ◽  
Catherine Brutesco ◽  
Christine Hajjar ◽  
Gregorio Cullia ◽  
Roberto Fanelli ◽  
...  

ABSTRACTIn metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host’s nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified inStaphylococcus aureus,Pseudomonas aeruginosaandYersinia pestisrespectively. These metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH), depending on the species. Here, we explored substrate specificity of CntM by combining bioinformatics and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity was mainly due to the amino acid at position 33 (S. aureusnumbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM fromP. aeruginosapreferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity towards α-ketoacids is largely governed by a single residue at position 150 of CntM (S. aureusnumbering): an aspartate at this position ensures selectivity towards pyruvate whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue inP. aeruginosaled to a complete reversal of selectivity. Thus, opine-type metallophore diversity is mainly mediated by the absence/presence of acntKgene encoding a histidine racemase, and the presence of an aspartate/alanine at position 150 of CntM. These two simple rules predict the production of a fourth metallophore byPaenibacillus mucilaginosus, which was confirmedin vitroand called bacillopaline.


2017 ◽  
Vol 66 (1) ◽  
pp. 125-129
Author(s):  
Witold Woźniak ◽  
Aleksandra Kozińska ◽  
Piotr Ciostek ◽  
Izabela Sitkiewicz

We compared association of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Enterococcus faecalis with nine vascular implants after co-culture. Vascular implants were composed of various materials such as warp knitted polyester (with or without gelatin and silver ions), expanded polytetrafluoroethylene and biological materials – surface treated porcine pericardial patch and Omniflow II. The lowest overall number of associated bacteria was detected for polytetrafluoroethylene implants and porcine pericardial patch. The highest overall number of associated bacteria was detected for Omniflow II implant. The major source of variation, i.e. primary factor influencing colonization, is the implant type (56.22%), bacterial species is responsible for only 1.81%, and interaction of those two factors – 13.09% of variation.


Author(s):  
Y. S. Stravskyy ◽  
L. Ya. Fedoniuk ◽  
O. M. Yarema ◽  
E. І. Skyba ◽  
L. S. Reznichenko

Вступ. Доклінічне вивчення лікарських препаратів – невід’ємна частина процесу створення лікарського засобу. Доклінічне дослідження є найбільш тривалим та відповідальним етапом розробки лікарського засобу, який вимагає особливих підходів до планування і забезпечення якості при плануванні вимірювальних експериментів, проведенні випробування та оцінки його результатів. Мета дослідження – визначити біобезпечність, гостру токсичність, протимікробну та фунгіцидну дії наночастинок Феруму. Методи дослідження. Біобезпечність синтезованої субстанції наночастинок у тестах in vitro визначали з використанням показників цитотоксичності, мутагенності, молекулярно-генетичного (показник генотоксичності), фізіологічного (стан мікрофлори шлунково-кишкового тракту людини) та біохімічних (ATФ-aзна і лактатдегідрогеназна активність) маркерів. Протимікробну дію нуль-валентного Феруму (Fe0NP) щодо тест-штамів мікроорганізмів визначали методом серійних розведень у бульйоні відповідно до Методичних вказівок 4.2.1890-04, 2004. Використовували такі тест-штами мікроорганізмів, як Salmonella typhimurium, Shigella sonnei, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Proteus mirabilis, Candida albicans, із колекції Державного науково-контрольного інституту біотехнології і штамів мікро­організмів. Результати й обговорення. Синтезовані наночастинки є частинками Fe0NP. Взаємодія синтезованих наночастинок Феруму з тестовими еукаріотичними клітинами не призводила до появи первинних ДНК‑ушко­джень порівняно з впливом N-нітрозометилсечовини, яка є відомим генотоксикантом. Синтезовані наночастинки характеризувались як біобезпечні у тестах на мутагенність з використанням поліхроматофільних еритроцитів кісткового мозку тварин. Аналіз показав, що експериментальна субстанція Fe0NP у досліджуваному концентраційному діапазоні проявила помірну протимікробну активність у тестах in vitro відносно як грамнегативних (S. typhimurium, S. sonnei, P. aeruginosa, P. vulgaris, P. mirabilis), так і грампозитивних (S. aureus) мікроорганізмів. Однак гриби Candida albicans виявилися нечутливими до наночастинок Феруму в досліджуваних концентраціях. Висновки. Фізико-хімічна характеристика й оцінка критеріїв біобезпечності в тестах in vitro та in vivo свідчать про те, що синтезованим сферичним наночастинкам нуль-валентного Феруму властивий низький рівень потенційної небезпеки: виявлено відсутність генотоксичної, цитотоксичної, мутагенної дій, негативного впливу на ключові біохімічні параметри і загальний фізіологічний стан живого організму. Це дозволяє рекомендувати синтезовану субстанцію наночастинок Феруму для подальших досліджень з метою їх застосування як потенційної біологічно активної субстанції.


2011 ◽  
Vol 74 (4) ◽  
pp. 524-530 ◽  
Author(s):  
J. R. NERREN ◽  
T. S. EDRINGTON ◽  
L. R. BERNSTEIN ◽  
R. L. FARROW ◽  
K. G. GENOVESE ◽  
...  

Strategies aimed at reducing fecal shedding of Salmonella and other foodborne pathogens may be effective for limiting transmission of pathogens from food animals to humans. The objective of this study was to determine the effectiveness of gallium maltolate (GaM) against Salmonella in vitro and to determine whether oral administration of GaM would reduce fecal shedding of Salmonella in cattle. Gallium is a semimetal exhibiting antimicrobial properties against some pathogenic bacteria, including Salmonella, by exploiting their need for iron to survive and replicate. In vitro growth studies were performed in pure cultures of Salmonella and in mixed cultures from ruminal fluid. Inclusion of GaM in culture medium or in mixed cultures of ruminal fluid resulted in a significant reduction in growth of Salmonella, suggesting that GaM may be effective for limiting growth and survival in vivo. Therefore, we subsequently administered two doses of GaM to Holstein steers, experimentally infected them with Salmonella, and quantitatively and qualitatively monitored fecal shedding at 12-h intervals. Sixty hours after beginning treatment, cattle were euthanized, and luminal contents and tissue were aseptically harvested from the rumen, jejunum, spiral colon, cecum, and rectum. The luminal contents were processed for quantitative and qualitative analysis of the challenge strains of Salmonella, and tissue samples were enriched and plated for qualitative analysis. We found no significant differences between control and treated animals in quantitative levels of Salmonella in the feces or the luminal contents. Likewise, we observed no pattern between control and treated animals in the frequency of positive or negative results from enriched feces, luminal contents, or tissue samples. These results suggest that GaM was not effective for reducing Salmonella in cattle.


2019 ◽  
Vol 69 (Supplement_7) ◽  
pp. S529-S537 ◽  
Author(s):  
Malcom G P Page

Abstract Iron is an essential nutrient for bacterial growth, replication, and metabolism. Humans store iron bound to various proteins such as hemoglobin, haptoglobin, transferrin, ferritin, and lactoferrin, limiting the availability of free iron for pathogenic bacteria. However, bacteria have developed various mechanisms to sequester or scavenge iron from the host environment. Iron can be taken up by means of active transport systems that consist of bacterial small molecule siderophores, outer membrane siderophore receptors, the TonB-ExbBD energy-transducing proteins coupling the outer and the inner membranes, and inner membrane transporters. Some bacteria also express outer membrane receptors for iron-binding proteins of the host and extract iron directly from these for uptake. Ultimately, iron is acquired and transported into the bacterial cytoplasm. The siderophores are small molecules produced and released by nearly all bacterial species and are classified according to the chemical nature of their iron-chelating group (ie, catechol, hydroxamate, α-hydroxyl-carboxylate, or mixed types). Siderophore-conjugated antibiotics that exploit such iron-transport systems are under development for the treatment of infections caused by gram-negative bacteria. Despite demonstrating high in vitro potency against pathogenic multidrug-resistant bacteria, further development of several candidates had stopped due to apparent adaptive resistance during exposure, lack of consistent in vivo efficacy, or emergence of side effects in the host. However, cefiderocol, with an optimized structure, has advanced and has been investigated in phase 1 to 3 clinical trials. This article discusses the mechanisms implicated in iron uptake and the challenges associated with the design and utilization of siderophore-mimicking antibiotics.


Sign in / Sign up

Export Citation Format

Share Document