RHOMBIC SILVER NANOPARTICLES ARRAY-BASED PLASMONIC FILTER

2011 ◽  
Vol 25 (19) ◽  
pp. 2557-2566 ◽  
Author(s):  
YONGQI FU ◽  
SHAOLI ZHU ◽  
XIULI ZHOU ◽  
WEI ZHOU ◽  
WEI ZHAO

A plasmonic filter applied in visible regime is proposed. A method using discrete dipole approximation (DDA) to aid design parameters of rhombic Ag nanoparticle array is adopted for the filter design and optimization on the basis of computational numerical calculation. Influence of the particle parameters such as thickness, period and effective index of medium around the particles on the extinction spectrum is studied using the DDA-based computational analysis. The calculation results show that the thickness ranging from 35 to 45 nm and the period ranging from 350 to 560 nm are the better geometrical parameters of the rhombic Ag nanoparticle array. Considering the nano-fabrication condition, 40 nm thickness and 440 nm period were selected and fabricated using nanosphere lithography (NSL) technique. The experimental results demonstrated that the measured spectrum is basically in agreement with the theoretical spectrum derived by the DDA calculation.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Liu ◽  
Haoyuan Cai ◽  
Kai Tang ◽  
Lingqi Kong

A plasmonic filter applied in visible regime is proposed on the basis of hexagonally arranged triangular silver nanoparticle arrays. A method using discrete dipole approximation (DDA) to aid design parameters of the silver nanoparticle arrays is adopted for the filter design and optimization on the basis of computational numerical calculation. The influence of the particle’s thickness and period on the extinction spectrum is studied using the DDA-based computational analysis. Considering the nanofabrication condition, arrays with 40 nm thickness and 230 nm period are selected and fabricated by using nanosphere lithography (NSL) technique. The experimental spectrum is basically in agreement with the theoretical spectrum derived by the DDA calculation.


2019 ◽  
Vol 806 ◽  
pp. 167-172
Author(s):  
Lyubov G. Statsenko ◽  
O.A. Pugovkina ◽  
A.R. Galay ◽  
Denis A. Kuzin

The possibility to use the split ring resonator – SRR in a microwave filter design is investigated. SRR is made from non-ferrous metals, is one of the variants of the inclusions in the metamaterial. The periodic SRR structure modifies the permittivity and permeability of the source material, to obtain a negative refractive index. These unique properties are widely used in microwave technology, because they allow to create devices with improved performance and extended functionality. Microstrip line with etched SRR on ground plane is considered. The equivalent circuit model for SRR is shown. The paper presents calculation and comparison of the return and transmission responses for SRR structure with series coupling feed lines and with parallel coupling feed lines. The basic relationships for calculating the S-parameters (the return S11(F) and transmission responses S21(F)) are given. S-parameter calculation is made. When the reflection coefficient S11(F) reaches the maximum value, and the transmission coefficient S11(F)- the minimum, the filter operates at the resonance frequency Fp. Simulation are made using the software of Microwave Office. The results are presented in graphs. The dependence of the resonant frequency of the filter from the value of the permittivity of the substrate is found. The effect of the type of metal (copper, gold, silver), from which made the SRR on the resonance frequency of the filter is defined. It is concluded that the increase in the value of the permittivity of the substrate causes a decrease in the value of the resonant frequency of the filter. While the type of metal material of the SRR, on the resonance filter properties do not have a significant influence. The research results will reduce the time spent on the design and optimization of the design parameters.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Wei An ◽  
Jun Wei ◽  
Xiaoyu Lu ◽  
Jian S. Dai ◽  
Yanzeng Li

AbstractCurrent research on robotic dexterous hands mainly focuses on designing new finger and palm structures, as well as developing smarter control algorithms. Although the dimensional synthesis of dexterous hands with traditional rigid palms has been carried out, research on the dimensional synthesis of dexterous hands with metamorphic palms remains insufficient. This study investigated the dimensional synthesis of a palm of a novel metamorphic multi-fingered hand, and explored the geometric design for maximizing the precision manipulation workspace. Different indexes were used to value the workspace of the metamorphic hand, and the best proportions between the five links of the palm to obtain the optimal workspace of the metamorphic hand were explored. Based on the fixed total length of the palm member, four nondimensional design parameters that determine the size of the palm were introduced; through the discretization method, the influence of the four design parameters on the workspace of the metamorphic hand with full-actuated fingers and under-actuated fingers was analyzed. Based on the analysis of the metamorphic multi-fingered hand, the symmetrical structure of the palm was designed, resulting in the largest workspace of the multi-fingered hand, and proved that the metamorphic palm has a massive upgrade for the workspace of underactuated fingers. This research contributed to the dimensional synthesis of metamorphic dexterous hands, with practical significance for the design and optimization of novel metamorphic hands.


2021 ◽  
Vol 30 (1) ◽  
pp. 19-27
Author(s):  
Kumar Gomathi ◽  
Arunachalam Balaji ◽  
Thangaraj Mrunalini

Abstract This paper deals with the design and optimization of a differential capacitive micro accelerometer for better displacement since other types of micro accelerometer lags in sensitivity and linearity. To overcome this problem, a capacitive area-changed technique is adopted to improve the sensitivity even in a wide acceleration range (0–100 g). The linearity is improved by designing a U-folded suspension. The movable mass of the accelerometer is designed with many fingers connected in parallel and suspended over the stationary electrodes. This arrangement gives the differential comb-type capacitive accelerometer. The area changed capacitive accelerometer is designed using Intellisuite 8.6 Software. Design parameters such as spring width and radius, length, and width of the proof mass are optimized using Minitab 17 software. Mechanical sensitivity of 0.3506 μm/g and Electrical sensitivity of 4.706 μF/g are achieved. The highest displacement of 7.899 μm is obtained with a cross-axis sensitivity of 0.47%.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2021 ◽  
Vol 36 (6) ◽  
pp. 726-733
Author(s):  
Yongjie Zhang ◽  
Xiaofeng Deng

In this study, 2D finite element (FE) solving process with the conformal perfectly matched layer (PML) is elucidated to perform the electromagnetic scattering computation. With the 2D monostatic RCS as the optimization objective, a sensitivity analysis of the basic design parameters of conformal PML (e.g., layer thickness, loss factor, extension order and layer number) is conducted to identify the major parameters of conformal PML that exerts more significant influence on 2D RCS. Lastly, the major design parameters of conformal PML are optimized by the simulated annealing algorithm (SA). As revealed from the numerical examples, the parameter design and optimization method of conformal PML based on SA is capable of enhancing the absorption effect exerted by the conformal PML and decreasing the error of the RCS calculation. It is anticipated that the parameter design method of conformal PML based on RCS optimization can be applied to the cognate absorbing boundary and 3D electromagnetic computation.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 749 ◽  
Author(s):  
Jang ◽  
Yoon ◽  
Cho ◽  
Jung ◽  
Lee ◽  
...  

In this paper, a germanium-based gate-metal-core vertical nanowire tunnel field effect transistor (VNWTFET) has been designed and optimized using the technology computer-aided design (TCAD) simulation. In the proposed structure, by locating the gate-metal as a core of the nanowire, a more extensive band-to-band tunneling (BTBT) area can be achieved compared with the conventional core–shell VNWTFETs. The channel thickness (Tch), the gate-metal height (Hg), and the channel height (Hch) were considered as the design parameters for the optimization of device performances. The designed gate-metal-core VNWTFET exhibits outstanding performance, with an on-state current (Ion) of 80.9 μA/μm, off-state current (Ioff) of 1.09 × 10−12 A/μm, threshold voltage (Vt) of 0.21 V, and subthreshold swing (SS) of 42.8 mV/dec. Therefore, the proposed device was demonstrated to be a promising logic device for low-power applications.


Volume 4 ◽  
2004 ◽  
Author(s):  
Hamid A. Hadim ◽  
Tohru Suwa

A new multidisciplinary design and optimization methodology in electronics packaging is presented. A genetic algorithm combined with multi-disciplinary design and multi-physics analysis tools are used to optimize key design parameters. This methodology is developed to improve the electronic package design process by performing multidisciplinary design and optimization at an early design stage. To demonstrate its capability, the methodology is applied to a Ball Grid Array (BGA) package design. Multidisciplinary criteria including thermal, thermal strain, electromagnetic leakage, and cost are optimized simultaneously. A simplified routability analysis criterion is treated as a constraint. The genetic algorithm is used for systematic design optimization while reducing the total computational time. The present methodology can be applied to any electronics product design at any packaging level from the chip level to the system level.


Sign in / Sign up

Export Citation Format

Share Document