STRUCTURAL AND OPTICAL PROPERTIES OF POLYCRYSTALLINE 6H-SiC AND CRYSTALLINE SiC FILM GROWN ONTO SILICON SUBSTRATE BY PLD

2008 ◽  
Vol 22 (01) ◽  
pp. 61-72 ◽  
Author(s):  
A. KEFFOUS ◽  
K. BOURENANE ◽  
O. MANSERI ◽  
H. MENARI ◽  
F. KEZZOULA ◽  
...  

In this paper, we present a comparative study of structural and optical properties of polycrystalline p-type 6H-SiC and thin SiC layer growth onto Si . The thin SiC layer was grown on a p-type Si(100) substrate by pulsed laser deposition (PLD) using KrF excimer laser from a 6H-SiC hot pressed target. The properties of polycrystalline 6H-SiC and thin SiC layer were investigated by scanning electronic microscopy (SEM), high resolution X-Ray Diffraction (XRD), secondary ion mass spectrometry (SIMS), FT-IR spectroscopy and photoluminescence spectrometry. XRD analysis showed that the two materials have the same hexagonal structure (6H-SiC) as identified by ASTM 72-0018. In addition, a SIMS analysis gives a ratio Si/C of the thin SiC layer around 1.15 but the ratio Si/C of the target was found equal to 1.06, whereas one should have 1.0. This is due to the higher ionization efficiency of Si by the report of C atoms and in photoluminescence, the two materials exhibit the same emission bands (blue and green). Finally, a crystalline thin SiC layer of 1.6 μm was elaborated using the PLD method at low-temperature indicating that the technique reproduces the same macroscopic property (optical, structural, mechanical, etc.) of the target.

2020 ◽  
Vol 835 ◽  
pp. 317-323
Author(s):  
D.A. Rayan ◽  
E.A. Abdel-Mawla ◽  
S.K. Mohamed ◽  
A.A. Mohamed ◽  
Mohamed M. Rashad

Nanocrystalline bismuth ferrite BFO; BiFeO3 and manganese sillenite, BMO; Bi12MnO20 (BMO) powders have been successfully elaborated using a facile co-precipitation approach. The formed materials were examined using X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM). Furthermore, the change in the optical properties was performed based on Fourier transform infrared spectroscopy (FT-IR) and UV-visible spectrophotometer. Typical, pure BiFeO3 and Bi12MnO20 phases were detected for the precursors precipitated at pH 10 based on ammonium hydroxide as a base then annealed at 500°C for 2h. Eventually, the optical band gap energy of BFO and BMO using Kubelka–Munk function based on Tauc’s plot was found to be 2.12 and 2.79 eV, respectively.


2019 ◽  
Vol 07 (01n02) ◽  
pp. 1950002
Author(s):  
Nadir Lalou ◽  
Ahmed Kadari

This work proposes the synthesis of nanocrystalline calcium oxide (CaO) pure and doped with different concentrations of lithium (Li[Formula: see text]) ions by sol–gel process. Calcium nitrate (Ca(NO[Formula: see text]4H2O; 99.99%) and lithium nitrate (LiNO3; 99.99%) were used as precursors. The synthesized powders were characterized by several techniques such as: UV-Vis transmission spectroscopy, Fourier Transform Infra-red spectroscopy (FT-IR) and X-ray diffraction (XRD). The main objective of this paper is to study the influence of lithium (Li[Formula: see text] ratio) on the structural and optical properties of synthesized powders. The band gap values decreased with the increasing of Li[Formula: see text] ions in CaO lattice; the slight change in the band gap was directly related to the energy transfer between the CaO excited states and the 2s levels of Li[Formula: see text] ions. The influence of Li[Formula: see text] doping on the physical properties of CaO nanocrystalline will be studied for the first time in this work; no literature has previously published this kind of impurities.


2009 ◽  
Vol 79-82 ◽  
pp. 1539-1542
Author(s):  
Zhen Zhu ◽  
Jin Ma ◽  
Cai Na Luan ◽  
Fan Yang ◽  
Ling Yi Kong

SnO2 thin films have been deposited on 6H-SiC(0001) substrates by metalorganic chemical vapor deposition (MOCVD) system. The structural and optical properties of SnO2 films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectrophotometry. The XRD analysis revealed that the prepared samples were SnO2 epitaxial films of rutile structure with a clear relationship of SnO2(100)// 6H-SiC(0001). The average transmittance for the deposited SnO2 samples in the visible range was about 60%.


Author(s):  
Marimuthu Karunakaran ◽  
S. Maheswari ◽  
Kasinathan Kasirajan ◽  
Sivaji Dinesh Raj ◽  
Rathinam Chandramohan

The growth of highly textured Mn doped Zinc oxide (ZnO) thin films with a preferred (002) orientation has been reported by employing successive ionic layer growth by adsorption reaction (SILAR) using a sodium zincate bath on glass substrates has been reported. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM) measurement. The XRD analysis reveals that the films were polycrystalline. Morphology of the films was found to be uniform with smaller grains and exhibits a structure with porous. The calculated Band gap value was found to be 3.21 eV prepared at 15 mM MnSO4 concentration.


2019 ◽  
Vol 397 ◽  
pp. 1-7
Author(s):  
Hassene Nezzari ◽  
Riad Saidi ◽  
Adel Taabouche ◽  
Meriem Messaoudi ◽  
Mohamed Salah Aida

In this work, ZnO thin films grown on heated glass substrates in a temperature range of 300 to 500 °C with a 50°C step. The prepared solution is composed of methanol and zinc acetate Zn(CH3COO)2.2H2O. ZnO thin films are deposited by pyrolysis spray technique, our work focuses on the study of the substrate temperature influence on the structural and optical properties of these layers. Therefore, The X-ray diffraction, showed a Wurtzit hexagonal structure of elaborated films, with (002) as a preferred orientation, and a grain size of 64 to 74 nm. The optical transmission spectroscopy UV-Visible, illustrated an increase of optical band gap from 3.19 to 3.25 eV, proportionally with the substrate temperature.


2013 ◽  
Vol 591 ◽  
pp. 293-296 ◽  
Author(s):  
Xiao Yan Fei ◽  
Jun Luo ◽  
Shu Wang Duo ◽  
Hao Zhang ◽  
Xiang Min Xu ◽  
...  

The ZnO nanorods were prepared at 130 °C, 160 °C and 190 °C for 6 h by hydrothermal method. The structural and optical properties of ZnO nanorods were invesitigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). XRD pattern analysis showed that the ZnO nanorods are the hexagonal structure (space group P63 mc). No other crystal phases, such as Zn and Zn (OH)2 were detected. FT-IR study identified the sharp peak that appeared at 573 cm-1 is related with the ZnO stretching mode. Also, SEM images revealed that the diameter of a single ZnO crystal ranges from 100 to 300 nm and the length ranges from 1 to 3 μm.


2021 ◽  
Vol 50 (10) ◽  
pp. 3127-3138
Author(s):  
Aljewaw O.B. ◽  
Karim M.K.A ◽  
Zaid M.H.M ◽  
Halimah M.K. ◽  
Noor N.M ◽  
...  

A new series of lithium-borate glass systems (23Li2O-72B2O3 in mol%) were synthesized with the substitution of Al2O3 (5 mol.%) as a modifier and doped with 0.3 and 0.5 mol% of Dy2O3. Four series of glasses (S1, S2, S3 and S4) were synthesized via the conventional melt-quenching technique and characterized by using UV-Visible-NIR absorption spectrometer and Fourier transform infrared (FTIR) spectroscopy. The current investigation gives further insight on the structural and optical properties of the samples. The diffraction spectrum obtained from the X-ray Diffraction (XRD) analysis shows no typical peaks in the glass system, which indicates its amorphous phase. The optical properties of Al3+ and Dy3+ ions were evaluated and found that there is a pivot effect for the addition of Al2O3 and Dy2O3 for the glass system. Notably, the sample S2 shows different behaviours for physical, structural, and optical properties compared with other prepared glass samples that can be attributed to the increment of Al2O3. Besides, the physical and ionizing shielding features were investigated for current glass samples. The radiation shielding properties were examined within the energy range of 0.015 until 15 MeV. The sample S4 has the optimum radiation shielding features as a result of the addition of Dy2O3. Hence, the composition attributes a new glass system that can be used in various applications such as radiation dosimeter and photon shielding materials.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2006 ◽  
Vol 118 ◽  
pp. 639-644
Author(s):  
Hye Sung Kim ◽  
Su Chak Ryu

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) powders is synthesized using the mixed powders of CaCO3 refined from oyster shells and phosphoric acid (H3PO4-98%, Daejung) as starting materials. The characteristic evaluation and chemical analysis of the synthesized powders is performed by X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICPAES). XRD analysis of synthetic powder by heat treatment at 1300°C for 2hrs shows only HAp peaks corresponding to stoichiometric HAp. It is confirmed by ICP-AES test that impurities such as Zn, In, Ti, Ba, Cd, Pb, and Mn, is not detected at all, but small amounts of Ti and Be is observed (0.099ppm Ti and 0.002ppm Ba). Variation of bone density is measured by giving medication of HAp powder with drinking water into human body continuously for three month. After the medication, the bone density is higher than the medication before. This means that HAp powder made from this process can be used as improver of bone density.


Sign in / Sign up

Export Citation Format

Share Document