Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells

2008 ◽  
Vol 295 (6) ◽  
pp. C1510-C1517 ◽  
Author(s):  
Hideyuki Yamawaki ◽  
Kazuaki Saito ◽  
Muneyoshi Okada ◽  
Yukio Hara

Methylglyoxal (MGO) is a reactive metabolite of glucose. Since the plasma concentration of MGO is increased in diabetic patients, MGO is implicated in diabetes-associated vascular endothelial cells (ECs) injury, which might be responsible for atherosclerosis. In the present study, we examined effects of treatment of human umbilical vein ECs with MGO on EC morphology and inflammatory responses. MGO (24 h) induced cytotoxic morphological changes in a concentration-dependent manner (0–420 μM). MGO induced mRNA and protein expression of cyclooxygenase (COX)-2 in a concentration (0–420 μM)- and time (6–24 h)-dependent manner. COX-2 induction was associated with increased PGE2 release. Acute treatment with MGO (20 min) induced concentration-dependent (0–420 μM) activation of JNK and p38 MAP kinase but not ERK or NF-κB. Both the JNK inhibitor SP600125 and the p38 inhibitor SB203580 prevented the MGO induction of COX-2. However, inhibiting JNK and p38 or COX-2 was ineffective to the morphological damage by MGO (420 μM, 24 h). EUK134, a synthetic combined superoxide dismutase/catalase mimetic, had no effect on MGO-induced COX-2. Present results indicated that MGO mediates JNK- and p38-dependent EC inflammatory responses, which might be independent of oxidative stress. On the other hand, MGO-induced morphological cell damage seems unlikely to be associated with COX-2-PGE2.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Purum Kang ◽  
Seung Ho Han ◽  
Hea Kyung Moon ◽  
Jeong-Min Lee ◽  
Hyo-Keun Kim ◽  
...  

The purpose of the present study is to examine the effects of essential oil ofCitrus bergamiaRisso (bergamot, BEO) on intracellular Ca2+in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+concentration[Ca2+]i. In the presence of extracellular Ca2+, BEO increased[Ca2+]i, which was partially inhibited by a nonselective Ca2+channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased[Ca2+]iin a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced[Ca2+]iincrease was partially inhibited by a Ca2+-induced Ca2+release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased[Ca2+]iin the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+uptake. In addition, store-operated Ca2+entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+release and affect promotion of Ca2+influx, likely via an SOC mechanism.


2020 ◽  
Vol 57 (6) ◽  
pp. 313-324
Author(s):  
Li-Hua Cao ◽  
Ho Sub Lee ◽  
Zhe-Shan Quan ◽  
Yun Jung Lee ◽  
Yu Jin

<b><i>Objective:</i></b> Xanthotoxin (XAT) is a linear furanocoumarin mainly extracted from the plants <i>Ammi majus</i> L. XAT has been reported the apoptosis of tumor cells, anti-convulsant, neuroprotective effect, antioxidative activity, and vasorelaxant effects. This study aimed to investigate the vascular protective effects and underlying molecular mechanisms of XAT. <b><i>Methods:</i></b> XAT’s activity was studied in rat thoracic aortas, isolated with aortic rings, and human umbilical vein endothelial cells (HUVECs). <b><i>Results:</i></b> XAT induced endothelium-dependent vasodilation in a concentration-dependent manner in the isolated rat thoracic aortas. Removal of endothelium or pretreatment of aortic rings with L-NAME, 1<i>H</i>-[1,2,4]-oxadiazolo-[4,3-<i>a</i>]-quinoxalin-1-one, and wortmannin significantly inhibited XAT-induced relaxation. In addition, treatment with thapsigargin, 2-aminoethyl diphenylborinate, Gd<sup>3+</sup>, and 4-aminopyridine markedly attenuated the XAT-induced vasorelaxation. XAT increased nitric oxide production and Akt- endothelial NOS (eNOS) phosphorylation in HUVECs. Moreover, XAT attenuated the expression of TNF-α-induced cell adhesion molecules such as intercellular adhesion molecule, vascular cell adhesion molecule-1, and E-selectin. However, this effect was attenuated by the eNOS inhibitors L-NAME and asymmetric dimethylarginine. <b><i>Conclusions:</i></b> This study suggests that XAT induces vasorelaxation through the Akt-eNOS-cGMP pathway by activating the K<sub>V</sub> channel and inhibiting the L-type Ca<sup>2+</sup> channel. Furthermore, XAT exerts an inhibitory effect on vascular inflammation, which is correlated with the observed vascular protective effects.


1999 ◽  
Vol 8 (6) ◽  
pp. 287-294 ◽  
Author(s):  
Pravit Akarasereenont ◽  
Kitirat Techatrisak ◽  
Sirikul Chotewuttakorn ◽  
Athiwat Thaworn

Prostaglandins (PGS) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. Prostaglandin E2 (PGE2) exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE2 involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE2 on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with interleukin-1β (IL-1β 1 ng/ml). COX activity was measured by the production of 6-keto-PGF1α, PGE2, PGF2α and thromboxane B2 (TXB2) in the presence of exogenous arachidonic acids (10 μM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 protein was measured by immunoblotting using specific antibody. Untreated HUVEC contained only COX-1 protein while IL-1β treated HUVEC contained COX-1 and COX-2 protein. PGE2 (3 μM for 24 h) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE2 (3 μM for 24 h) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with IL1 β. This inhibition was reversed by coincubation with forskolin (100 μM). The increased COX activity in HUVEC treated with IL-1β was also inhibited by PGE2 (0.03, 0.3 and 3 μM for 24 h) in a dose-dependent manner. Similarly, forskolin (10, 50 or 100 μM) can also reverse the inhibition of PGE2 on increased COX activity in IL-1β treated HUVEC. The results suggested that (i) PGE2 can initiate negative feedback regulation in the induction of COX-2 elicited by IL-1β in endothelial cells, (ii) the inhibition of PGE2 on COX-2 protein and activity in IL-1β treated HUVEC is mediated by cAMP and (iii) the therapeutic use of PGE2 in the condition which COX-2 has been involved may have different roles.


2008 ◽  
Vol 389 (7) ◽  
Author(s):  
Munekazu Yamakuchi ◽  
Clare Bao ◽  
Marcella Ferlito ◽  
Charles J. Lowenstein

Abstract Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.


Cardiology ◽  
2015 ◽  
Vol 132 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Yanlin Zhang ◽  
Ying Xie ◽  
Shoujiang You ◽  
Qiao Han ◽  
Yongjun Cao ◽  
...  

Objectives: Oxidized low-density lipoprotein (ox-LDL) may induce autophagy, apoptosis, necrosis or proliferation of cultured endothelial cells depending on the concentration and exposure time. Our previous studies found that ox-LDL exposure for 6 h increases the autophagic level of human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. The present study investigates the relationship between autophagy and apoptosis in HUVECs exposed to ox-LDL. Methods: Flow cytometry and Western blot were used to study the apoptotic and autophagic phenomena. The contribution of autophagic and apoptotic mechanisms to ox-LDL-induced upregulation of MAP1-LC3, beclin1 and p53 protein levels were assessed by pretreatment with the autophagic inhibitors 3-MA and Atg5 small interfering (si)RNA, as well as z-vad-fmk, an apoptosis inhibitor. Results: ox-LDL induced the apoptosis of HUVECs in a concentration-dependent way. The increased expression of the autophagic proteins, LC3-II and beclin1, can be reversed by 3-MA and z-vad-fmk pretreatment. 3-MA and Atg5 siRNA increased the ox-LDL-induced increases of the p53 protein level and the annexin V-positive staining, which was decreased by z-vad-fmk. Conclusion: These results suggest that overstimulation of ox-LDL can induce autophagy and apoptosis in HUVECs. Inhibition of apoptosis leads to an inhibition of autophagy induced by ox-LDL. However, inhibition of autophagy leads to an increase in the ox-LDL-induced apoptosis.


Pteridines ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 97-103
Author(s):  
Huichao Pan ◽  
Min Zhang

AbstractEndothelial cell (EC) dysfunction has a fundamental role in the development of atherosclerosis, which leads to myocardial infarction and stroke. The aim of this study is to investigate the effect of serum from patients with coronary atherosclerotic heart disease (CAD) on endothelial cells and investigate the possible mechanism underlying these effects. Serum from 35 patients with CAD and 35 healthy volunteers was collected. Human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis were assessed by a CCK‑8 assay and a flow cytometry assay, respectively. The synthesis of nitric oxide (NO) and reactive oxygen species (ROS) was measured using the nitrate reduction method and DCFH2-DA staining, respectively. The proliferation of HUVECs was inhibited by treatment with serum from CAD patients (P<0.05). Suppression of HUVEC proliferation by CAD serum occurred in a concentration-dependent manner. The synthesis of NO was also reduced in the CAD serum-treated group. Furthermore, the serum from CAD patients increased both apoptosis and intracellular ROS production in HUVECs. Moreover, treatment with tempol antagonized CAD serum-meditated HUVEC injuries. Taken together, these results suggest that HUVEC injury via CAD serum treatment is mediated by ROS production. Tempol may partly reverse this effect by abolishing HUVEC apoptosis.


2011 ◽  
Vol 301 (3) ◽  
pp. C739-C748 ◽  
Author(s):  
Donghui Liu ◽  
Liang Ji ◽  
Xunliang Tong ◽  
Bing Pan ◽  
Jing-Yan Han ◽  
...  

High-density lipoprotein (HDL) can induce cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release in endothelial cells to exert multiple antiatherogenic functions. This effect has been attributed mainly to the role of sphingosine-1-phosphate (S1P) integrated in HDL. However, whether apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, could induce COX-2 expression and PGI-2 release still remains unclear. In the present study, we selectively delipidated HDL and confirmed that apoA-I could facilitate COX-2 expression and PGI-2 production in human umbilical vein endothelial cells (HUVECs). ApoA-I, but not trypsinized apoA-I, induced COX-2 expression in a time- and dose-dependent manner consistent with a key role for apoA-I in this process. Additionally, cotreatment of apoA-I with S1P further enhanced COX-2 expression and PGI-2 production in HUVECs. These effects triggered by apoA-I were not inhibited by pertussis toxin, consistent with SIP receptor independent pathway for apoA-I effect. Moreover, we demonstrated that the activation of p38 mitogen-activated protein kinase (MAPK), extracellular receptor kinase (ERK) 1/2, and JAK2 pathways by apoA-I was involved in the expression of COX-2 and the release of PGI-2 in HUVECs, and these effects were inhibited by their specific inhibitors, respectively. Small interfering RNA experiments showed that ATP binding-cassette transporter A1 (ABCA1) was required for COX-2 expression and PGI-2 release induced by apoA-I. Thus our results indicate that apoA-I induces COX-2 expression and PGI-2 release through ABCA1 and the activation of intracellular p38 MAPK, ERK1/2, as well as JAK2 pathways, and apoA-I can reinforce these effects with S1P in HUVECs. These novel effects of apoA-I could in part mediate antiatherogenic effects of HDL.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
Maria Koziolkiewicz ◽  
Edyta Gendaszewska ◽  
Maria Maszewska ◽  
C. A. Stein ◽  
Wojciech J. Stec

Many reports indicate different nonantisense yet sequence-specific effects of antisense phosphorothioate oligonucleotides. Products of enzymatic degradation of the oligonucleotides can also influence cell proliferation. The cytotoxic effects of deoxyribonucleoside-5′-phosphates (dNMPs) and their 5′-phosphorothioate analogs, deoxyribonucleoside-5′-monophosphorothioates (dNMPSs) on 4 human cell types (HeLa, HL-60, K-562, and endothelial cells) were examined, and the effects were correlated with the catabolism of these compounds. The results indicate that differences in cytotoxicity of dNMPs or dNMPSs in these cells depend upon different activity of an ecto-5′-nucleotidase. It has also been found that dNMPSs stimulate proliferation of human umbilical vein endothelial cells and HL-60 cells in a concentration-dependent manner. This stimulation might be caused by the binding of deoxynucleoside-5′-phosphorothioates to as-yet unidentified nucleotide receptor(s) at the cell surface.


1996 ◽  
Vol 270 (1) ◽  
pp. C259-C264 ◽  
Author(s):  
X. M. Xu ◽  
J. L. Tang ◽  
A. Hajibeigi ◽  
D. S. Loose-Mitchell ◽  
K. K. Wu

Human endothelial cells contain two isoforms of prostaglandin H synthase (PGHS). PGHS-1 is constitutively expressed, whereas PGHS-2 is inducible. To determine whether expression of PGHS-1 is regulated, we treated cultured human umbilical vein endothelial cells (HUVEC) with phorbol 12-myristate 13-acetate (PMA) or its inactive analogue and measured PGHS-1 mRNA levels by Northern analysis and competitive polymerase chain reaction. PMA increased PGHS-1 mRNA levels determined by both techniques in a time- and concentration-dependent manner. The mRNA level was increased about twofold over the basal level after 4-6 h of PMA (10-50 nM) treatment. The level of PGHS-1 protein was similarly increased by PMA. Stimulation of PGHS-1 mRNA levels was abrogated by cycloheximide, actinomycin D, staurosporine, or calphostin C. The 5'-promoter activity of human PGHS-1 gene was increased twofold over the basal level by PMA in NS-20 cells. These results indicate that the constitutive PGHS-1 in HUVEC is transcriptionally stimulated by PMA in a protein kinase C-dependent manner.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wei-Min Han ◽  
Xu-Chang Chen ◽  
Gui-Rong Li ◽  
Yan Wang

The strategy of decreasing atherosclerotic cardiovascular disorder is imperative for reducing premature death and improving quality of life in patients with diabetes mellitus. The aim of this study was to investigate whether the natural flavone acacetin could protect against endothelial injury induced by high glucose and attenuate diabetes-accelerated atherosclerosis in streptozotocin-(STZ) induced diabetic ApoE−/− mice model. It was found that in human umbilical vein endothelial cells (HUVECs) cultured with normal 5.5 mM or high 33 mM glucose, acacetin (0.3–3 μM) exerted strong cytoprotective effects by reversing high glucose-induced viability reduction and reducing apoptosis and excess production of intracellular reactive oxygen species (ROS) and malondialdehyde in a concentration-dependent manner. Acacetin countered high glucose-induced depolarization of mitochondrial membrane potential and reduction of ATP product and mitoBcl-2/mitoBax ratio. Silencing Sirt3 abolished the beneficial effects of acacetin. Further analysis revealed that these effects of acacetin rely on Sirt1 activation by increasing NAD+ followed by increasing Sirt3, pAMPK and PGC-1α. In STZ-diabetic mice, acacetin significantly upregulated the decreased signaling molecules (i.e. SOD, Bcl-2, PGC-1α, pAMPK, Sirt3 and Sirt1) in aorta tissue and attenuated atherosclerosis. These results indicate that vascular endothelial protection of acacetin by activating Sirt1/Sirt3/AMPK signals is likely involved in alleviating diabetes-accelerated atherosclerosis by preserving mitochondrial function, which suggests that acacetin may be a drug candidate for treating cardiovascular disorder in patients with diabetes.


Sign in / Sign up

Export Citation Format

Share Document