Effects of growth differentiation factor 9 on cell cycle regulators and ERK42/44 in human granulosa cell proliferation

2009 ◽  
Vol 296 (6) ◽  
pp. E1344-E1353 ◽  
Author(s):  
Qing Huang ◽  
Anthony P. Cheung ◽  
Yu Zhang ◽  
He-Feng Huang ◽  
Nelly Auersperg ◽  
...  

GDF-9 stimulates granulosa cell proliferation and plays important roles during folliclogenesis. However, its molecular mechanisms are still far from clear, particularly its roles in human granulosa cells around the periovulatory stage. Therefore, we investigated the effects of GDF-9 on cell cycle distribution, regulatory molecules, and signaling pathways involved in human luteinized granulosa (hLG) cells in vitro. Primary cultures of hLG cells obtained from women undergoing IVF and treated with and without recombinant GDF-9 were evaluated with and without a specific inhibitor to activin receptor-like kinase 5 (ALK5; SB-431542), ERK42/44 (PD-098059), or Smad3 (SIS3). Cell proliferation, cell cycle distribution, mRNA expression, and protein expression of relevant cell cycle molecules were determined by [3H]thymidine incorporation, flow cytometry, quantitative PCR, and immunoblotting, respectively. GDF-9 stimulated [3H]thymidine incorporation, enhanced cell transition from G0/G1to S and G2/M phases (whereas both SB-431542 and PD-098059 attenuated these changes), increased mRNA and protein expression of cyclin D1and E, and decreased those of the cyclin-dependent kinase (CDK) inhibitors p15INK4Band p16INK4A. GDF-9 also activated Rb protein (a critical G1to S-phase regulator), ERK42/44, and Smad3. PD-098059 blocked Rb protein phorsphorylation and the increase in cyclin D1and E but not the decrease in p15INK4Band p16INK4Ainduced by GDF-9. In contrast, SIS3 reversed the decrease in p15INK4Band p16INK4Abut not the increase in cyclin D1and E induced by GDF-9. GDF-9 stimulates hLG cell proliferation by stimulating cyclin D1and E and suppressing p15INK4Band p16INK4Avia both Smad-dependent and Smad-independent pathways.

Author(s):  
Xiali Tang ◽  
Ying Zheng ◽  
Demin Jiao ◽  
Jun Chen ◽  
Xibang Liu ◽  
...  

Background: Small Cell Lung Cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. The purpose of this study was to investigate the effect of anlotinib on SCLC and the potential molecular mechanisms. Methods: Cell viability was assessed by CCK-8 assay to determine the adequate concentration of anlotinib. Then, effects of anlotinib on cell apoptosis, cell cycle distribution, migration and invasion were analyzed by flow cytometry, PI staining, wound healing assay and transwell assay, respectively. The protein expression of c-met and ERK1/2 pathways in H446 cells were assessed by western blot analysis. Result: In this study, we found that anlotinib significantly reduced the cell viability of H446 cells, induced G2/M cell cycle arrest and decreased invasion and migration of H446 cells. Futhermore, we also found that anlotinib could suppress c-met signal transduction and activate the ERK1/2 pathway in H446 cells. More importantly, c-met was involved in the effects of anlotinib on migration and invasion in H446 cells. Conclusion: Taken together, our results demonstrated that anlotinib was a potential anticancer agent that inhibited cell proliferation, migration and invasion via suppression of the c-met pathway and activation of the ERK1/2 pathway in H446 cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Malin Bergqvist ◽  
Karin Elebro ◽  
Signe Borgquist ◽  
Ann H. Rosendahl

BackgroundObesity and associated metabolic conditions impact adipocyte functionality with potential consequences for breast cancer risk and prognosis, but contributing mechanisms remain to be understood. The adipokine receptor adenylyl cyclase-associated protein-1 (CAP1) has been implicated in the progression of breast cancer, but results are conflicting and the underlying molecular mechanisms are still unknown. In this study, molecular and cellular effects in breast cancer cells by stimulation of adipocytes under normal or obese-like conditions, and potential involvement of CAP1, were assessed.Material and MethodsEstrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cells were exposed to adipocyte-secretome from adipocytes placed under pressures mimicking normal and obese-like metabolic conditions. Changes in phosphorylated kinase proteins and related biological pathways were assessed by phospho-antibody array and PANTHER analysis, cell proliferation were investigated through sulforhodamine B, cell cycle distribution by flow cytometry. Functional effects of CAP1 were subsequently examined following small interfering (si)RNA-mediated knockdown.ResultsProtein phosphorylations involved in important biological processes were enriched in T47D breast cancer cells in response to adipocyte secretome from obese-like compared with normal conditions. The obesity-associated adipocyte secretome further stimulated cell proliferation and a shift from cell cycle G1-phase to S- and G2/M-phase was observed. Silencing of CAP1 decreased cell proliferation in both T47D and MDA-MB-231 cells, and reduced the obesity-associated secretome-induction of phosphoproteins involved in cell proliferation pathways.ConclusionsThese results indicate that the adipocyte secretome and CAP1 are mechanistically important for the proliferation of both ER-positive and ER-negative breast cancer cells, and potential signaling mediators were identified. These studies provide biological insight into how obesity-associated factors could affect breast cancer.


2012 ◽  
Vol 302 (4) ◽  
pp. C676-C685 ◽  
Author(s):  
Li-Chuan Chung ◽  
Ke-Hung Tsui ◽  
Tsui-Hsia Feng ◽  
Shiow-Ling Lee ◽  
Phei-Lang Chang ◽  
...  

l-Mimosine, an iron chelator and a prolyl 4-hydroxylase inhibitor, blocks many cancer cells at the late G1 phase. B-cell translocation gene 2 ( Btg2) regulates the G1/S transition phases of the cell cycle. N- myc downstream regulated gene 1 ( Ndrg1) is a differentiation-inducing gene upregulated by hypoxia. We evaluated the molecular mechanisms of l-mimosine on cell cycle modulation in PC-3 and LNCaP prostate carcinoma cells. The effect of l-mimosine on cell proliferation of prostate carcinoma cells was determined by the [3H]thymidine incorporation and flow cytometry assays. l-Mimosine arrested the cell cycle at the G1 phase in PC-3 cells and at the S phase in LNCaP cells, thus attenuating cell proliferation. Immunoblot assays indicated that hypoxia and l-mimosine stabilized hypoxia-inducible factor-1α (HIF-1α) and induced Btg2 and Ndrg1 protein expression, but downregulated protein levels of cyclin A in both PC-3 and LNCaP cells. l-Mimosine treatment decreased cyclin D1 protein in PC-3 cells, but not in LNCaP cells. Dimethyloxalylglycine, a pan-prolyl hydroxylase inhibitor, also induced Btg2 and Ndrg1 protein expression in LNCaP cells. The transient gene expression assay revealed that l-mimosine treatment or cotransfection with HIF-1α expression vector enhanced the promoter activities of Btg2 and Ndrg1 genes. Knockdown of HIF-1α attenuated the increasing protein levels of both Btg2 and Ndrg1 by hypoxia or l-mimosine in LNCaP cells. Our results indicated that hypoxia and l-mimosine modulated Btg2 and Ndrg1 at the transcriptional level, which is dependent on HIF-1α. l-Mimosine enhanced expression of Btg2 and Ndrg1, which attenuated cell proliferation of the PC-3 and LNCaP prostate carcinoma cells.


2018 ◽  
Vol 48 (2) ◽  
pp. 670-682 ◽  
Author(s):  
Xiafei  Fu ◽  
Yuanli He ◽  
Xuefeng Wang ◽  
Dongxian Peng ◽  
Xiaoying Chen ◽  
...  

Background/Aims: Several miRNAs have been reported to be involved in the pathogenesis of polycystic ovarian syndrome (PCOS). However, the biological roles of miR-16 and its molecular mechanisms in PCOS development remain to be elucidated. Methods: qRT-PCR was performed to detect the expression levels of miR-16 and programmed cell death protein 4 (PDCD4). GCs proliferation, cell cycle distribution and apoptosis were examined by MTT assay and flow cytometry analysis. Luciferase reporter assay and RIP assay were applied to confirm the regulatory relationship between miR-16 and PDCD4. Western blot was applied to measure the protein levels of PDCD4, PCNA and caspase-3. ELISA kits were used to determine the serum levels of steroids. Results: miR-16 expression was down-regulated in ovarian cortex tissues and serums of PCOS patients. PDCD4 expression was up-regulated in ovarian cortex tissues of PCOS patients. miR-16 overexpression facilitated cell proliferation, induced cell cycle progression, and inhibited apoptosis in GCs. Moreover, PDCD4 was a direct target of miR-16. Also, enforced expression of PDCD4 abated the effects of miR-16 on GCs growth and apoptosis. Additionally, testosterone resulted in a decrease of miR-16 expression and an increase of PDCD4 expression, thus blocking cell growth and enhanced apoptosis in GCs. Furthermore, miR-16 overexpression alleviated PCOS in vivo by regulating PDCD4. Conclusions: miR-16 promoted ovarian GCs proliferation and inhibited apoptosis through directly targeting PDCD4 in PCOS, contributing to a better understanding of the molecular mechanism of GCs dysregulation and providing a promising target in PCOS.


2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


2018 ◽  
Vol 18 (2) ◽  
pp. 210-215 ◽  
Author(s):  
Mona Diab-Assaf ◽  
Josiane Semaan ◽  
Marwan El-Sabban ◽  
Soad K. Al Jaouni ◽  
Rania Azar ◽  
...  

Introduction: Adult T-cell leukemia (ATL) is an aggressive form of malignancy caused by human T- cell lymphotropic virus 1 (HTLV-1). Currently, there is no effective treatment for ATL. Thymoquinone has been reported to have anti-cancer properties. Objective: The aim of this study is to investigatthe effects of TQ on proliferation, apoptosis induction and the underlying mechanism of action in both HTLV-1 positive (C91-PL and HuT-102) and HTLV-1 negative (CEM and Jurkat) malignant T-lymphocytes. Materials and Methods: Cells were incubated with different thymoquinone concentrations for 24h. Cell cytotoxicity was assayed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay Kit. Cell proliferation was determined using CellTiter 96® Non-Radioactive Cell Proliferation. Cell cycle analysis was performed by staining with propidium iodide. Apoptosis was assessed using cell death ELISA kit. The effect of TQ on p53, p21, Bcl-2 protein expression was determined using Western blot analysis while TGF mRNA expression was determined by RT-PCR. Results: At non-cytotoxic concentrations of TQ, it resulted in the inhibition of proliferation in a dose dependent manner. Flow cytometric analysis revealed a shift in the cell cycle distribution to the PreG1 phase which is a marker of apoptosis. Also TQ increase DNA fragmentation. TQ mediated its anti-proliferative effect and apoptosis induction by an up-regulation of TGFβ1, p53 and p21 and a down-regulation of TGF-α and Bcl-2α. Conclusion: Thymoquinone presents antiproliferative and proapoptotic effects in ATL cells. For this reason, further research is required to investigate its possible application in the treatment of ATL.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 929-935 ◽  
Author(s):  
Pradeep P. Kayampilly ◽  
K. M. J. Menon

FSH, acting through multiple signaling pathways, regulates the proliferation and growth of granulosa cells, which are critical for ovulation. The present study investigated whether AMP-activated protein kinase (AMPK), which controls the energy balance of the cell, plays a role in FSH-mediated increase in granulosa cell proliferation. Cells isolated from immature rat ovaries were grown in serum-free, phenol red free DMEM-F12 and were treated with FSH (50 ng/ml) for 0, 5, and 15 min. Western blot analysis showed a significant reduction in AMPK activation as observed by a reduction of phosphorylation at thr 172 in response to FSH treatment at all time points tested. FSH also reduced AMPK phosphorylation in a dose-dependent manner with maximum inhibition at 100 ng/ml. The chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, 0.5 mm) increased the cell cycle inhibitor p27 kip expression significantly, whereas the AMPK inhibitor (compound C, 20 μm) and FSH reduced p27kip expression significantly compared with control. FSH treatment resulted in an increase in the phosphorylation of AMPK at ser 485/491 and a reduction in thr 172 phosphorylation. Inhibition of Akt phosphorylation using Akt inhibitor VIII reversed the inhibitory effect of FSH on thr 172 phosphorylation of AMPK, whereas ERK inhibitor U0126 had no effect. These results show that FSH, through an Akt-dependent pathway, phosphorylates AMPK at ser 481/495 and inhibits its activation by reducing thr 172 phosphorylation. AMPK activation by 5-amino-imidazole-4-carboxamide-1-β-d-ribofuranoside treatment resulted in a reduction of cell cycle regulatory protein cyclin D2 mRNA expression, whereas FSH increased the expression by 2-fold. These results suggest that FSH promotes granulosa cell proliferation by increasing cyclin D2 mRNA expression and by reducing p27 kip expression by inhibiting AMPK activation through an Akt-dependent pathway. FSH stimulates granulosa cell proliferation by reducing cell cycle inhibitor p27 kip through AMP kinase inhibition.


1996 ◽  
Vol 84 (5) ◽  
pp. 831-838 ◽  
Author(s):  
Xiao-Nan Li ◽  
Zi-Wei Du ◽  
Qiang Huang

✓ The modulation effects of hexamethylene bisacetamide (HMBA), a differentiation-inducing agent, on growth and differentiation of cells from human malignant glioma cell line SHG-44 were studied. At cytostatic doses (2.5 mM, 5 mM, 7.5 mM, and 10 mM for 15 days), HMBA exerted a marked inhibitory effect on cell proliferation. Exposure to HMBA (5 mM and 10 mM for 12 days) also resulted in an accumulation of cells in G0/G1 phase and a decrease of cells in S phase as analyzed by flow cytometry. The reversible effects of 7.5 mM HMBA and 10 mM HMBA on cell proliferation and 10 mM HMBA on disruption of cell cycle distribution were observed when HMBA was removed from culture media on Day 6 and replaced with HMBA-free media. Colony-forming efficiency (CFE) in soft agar was remarkably decreased by HMBA (2.5 mM, 5 mM, 7.5 mM, and 10 mM for 14 days), and in 7.5 mM HMBA— and 10 mM HMBA—treated cells, the CFEs were reduced to 25% and 12.5%, respectively, of that in untreated cells. Cells treated with HMBA (5 mM and 10 mM for 15 days) remained tumorigenic in athymic nude mice, but the growth rates of the xenografts were much slower than those in the control group. The effects of HMBA on cell proliferation, cell cycle distribution, CFE, and growth of xenografts were dose dependent. A more mature phenotype was confirmed by the morphological changes from spindle shape to large polygonal stellate shape and remarkably elevated expression of glial fibrillary acidic protein in cells exposed to HMBA (5 mM, 10 mM for 15 days). Our results showed that a more differentiated phenotype with marked growth arrest was induced in SHG-44 cells by HMBA.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


Sign in / Sign up

Export Citation Format

Share Document