Tissue-type plasminogen activator deficiency attenuates peritoneal fibrosis in mice

2009 ◽  
Vol 297 (6) ◽  
pp. F1510-F1517 ◽  
Author(s):  
Kei Kurata ◽  
Shoichi Maruyama ◽  
Sawako Kato ◽  
Waichi Sato ◽  
Jun-ichiro Yamamoto ◽  
...  

Peritoneal fibrosis (PF) is an important complication of peritoneal dialysis therapy. The present study was performed to examine the mechanisms of PF in view of the plasminogen activator (PA)/plasmin/matrix metalloproteinase (MMP) cascade. PF was induced in tissue-type PA (tPA) deficient mice and wild-type mice by intraperitoneal injection of chlorhexidine gluconate. Mice were killed on day 21, and tissue samples were taken. Histopathological studies were performed. Plasmin activity, gelatinases activity, and the levels of tPA, transforming growth factor-β1 (TGF-β1), and MMP-2 mRNA were determined. Protein levels of MMP-3, tissue inhibitor of metalloproteinases (TIMP)-1, -2, and -3, phospho-Smad3, membrane-type 1 (MT1)-MMP, and MT3-MMP were also studied. On day 21, tPA +/+ mice showed severe PF, whereas tPA −/− mice showed milder change. Submesothelial basement membranes were dissolved in tPA +/+ mice while they were relatively preserved in tPA −/− mice. The levels of macrophage infiltration, staining for α-smooth muscle actin (α-SMA) and collagen type III, and vascular density were all significantly lower in tPA −/− mice than in tPA +/+ mice. The levels of plasmin activity, pro- and active MMP-2, mRNA expression of tPA and TGF-β1, and phospho-Smad3 protein were also lower in tPA −/− mice. No difference was observed between the two groups concerning the protein levels of MMP-3, TIMP-1, TIMP-2, TIMP-3, MT1-MMP, or MT3-MMP. These results indicate that the presence of tPA enhances inflammation, angiogenesis, and fibrogenesis in the peritoneum of the PF model mice. Activation of the PA/plasmin/MMP cascade may play a pivotal role in the pathogenesis of PF.

2015 ◽  
Vol 35 (5) ◽  
pp. 506-516 ◽  
Author(s):  
Keiichi Wakabayashi ◽  
Chieko Hamada ◽  
Reo Kanda ◽  
Takanori Nakano ◽  
Hiroaki Io ◽  
...  

BackgroundPreventing peritoneal damage during peritoneal dialysis is critical. Reactive oxygen species (ROS) have an important role in peritoneal damage; however, few studies have investigated this. We aimed to determine the effects of oral astaxanthin (AST) supplementation in a peritoneal fibrosis (PF) rat model.MethodsThirty-seven Sprague-Dawley rats were divided into 5 groups: Control 1 (fed a normal diet without stimulation), Control 2 (fed an AST-supplemented diet without stimulation), Group 1 (fed a normal diet with 8% chlorhexidine gluconate [CG] stimulation for 3 weeks), Group 2 (fed a 0.06% AST-supplemented diet with CG stimulation), and Group 3 (fed a 0.06% AST-supplemented diet that was initiated 4 weeks before CG stimulation). Peritoneal fibrosis, vascular proliferation, and fibrosis-related factor expression were examined.ResultsPeritoneal thickness was significantly suppressed by AST supplementation. Astaxanthin diminished the number of CD68-, 8-hydroxy-2'–deoxyguanosine (8-OHdG)-, and monocyte chemoattractant protein-1 (MCP-1)-positive cells. Type 3 collagen, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and MCP-1 mRNA expression was significantly lower in Group 3 than in Group 1. Increased transforming growth factor-β (TGF-β) and Snail mRNA expression, vascular density, and the number of α–smooth muscle actin (α–SMA)-positive cells were also decreased in Group 3.ConclusionAstaxanthin suppressed PF development through the inhibition of inflammation and oxidation in PF rats. It appears that the anti-oxidative agent AST may be useful for the prevention of peritoneal damage.


2008 ◽  
Vol 294 (3) ◽  
pp. C842-C855 ◽  
Author(s):  
Eri Kubo ◽  
Nigar Fatma ◽  
Yoshio Akagi ◽  
David R. Beier ◽  
Sanjay P. Singh ◽  
...  

A diminished level of endogenous antioxidant in cells/tissues is associated with reduced resistance to oxidative stress. Peroxiredoxin 6 (PRDX6), a protective molecule, regulates gene expression/function by controlling reactive oxygen species (ROS) levels. Using PRDX6 protein linked to TAT, the transduction domain from human immunodeficiency virus type 1 TAT protein, we demonstrated that PRDX6 was transduced into lens epithelial cells derived from rat or mouse lenses. The protein was biologically active, negatively regulating apoptosis and delaying progression of cataractogenesis by attenuating deleterious signaling. Lens epithelial cells from cataractous lenses bore elevated levels of ROS and were susceptible to oxidative stress. These cells harbored increased levels of active transforming growth factor (TGF)-β1 and of α-smooth muscle actin and βig-h3, markers for cataractogenesis. Importantly, cataractous lenses showed a 10-fold reduction in PRDX6 expression, whereas TGF-β1 mRNA and protein levels were elevated. The changes were reversed, and cataractogenesis was delayed when PRDX6 was supplied. Results suggest that delivery of PRDX6 can postpone cataractogenesis, and this should be an effective approach to delaying cataracts and other degenerative diseases that are associated with increased ROS.


Rheumatology ◽  
2020 ◽  
Vol 59 (10) ◽  
pp. 3092-3098 ◽  
Author(s):  
Sonsoles Piera-Velazquez ◽  
Jolanta Fertala ◽  
Gonzalo Huaman-Vargas ◽  
Natalia Louneva ◽  
Sergio A Jiménez

Abstract Objective SSc is a systemic fibrotic disease affecting skin, numerous internal organs and the microvasculature. The molecular pathogenesis of SSc tissue fibrosis has not been fully elucidated, although TGF-β1 plays a crucial role. The Hic-5 protein encoded by the TGF-β1-inducible HIC-5 gene participates in numerous TGF-β-mediated pathways, however, the role of Hic-5 in SSc fibrosis has not been investigated. The aim of this study was to examine HIC-5 involvement in SSc tissue fibrosis. Methods Affected skin from three patients with diffuse SSc and dermal fibroblasts cultured from affected and non-affected SSc skin were examined for HIC-5 and COL1A1 gene expression. Real-time PCR, IF microscopy, western blotting and small interfering RNA–mediated HIC-5 were performed. Results HIC-5 and COL1A1 transcripts and Hic-5, type 1 collagen (COL1) and α-smooth muscle actin (α-SMA) protein levels were increased in clinically affected SSc skin compared with normal skin and in cultured dermal fibroblasts from affected SSc skin compared with non-affected skin fibroblasts from the same patients. HIC-5 knockdown caused a marked reduction of COL1 production in SSc dermal fibroblasts. Conclusion HIC-5 expression is increased in affected SSc skin compared with skin from normal individuals. Affected SSc skin fibroblasts display increased HIC-5 and COL1A1 expression compared with non-affected skin fibroblasts from the same patients. Hic-5 protein was significantly increased in cultured SSc dermal fibroblasts. HIC-5 mRNA knockdown in SSc fibroblasts caused >50% reduction of COL1 production. Although these are preliminary results owing to the small number of skin samples studied, they indicate that Hic-5 plays a role in the profibrotic activation of SSc dermal fibroblasts and may represent a novel molecular target for antifibrotic therapy in SSc.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Chongxiang Xiong ◽  
Na Liu ◽  
Xiaofei Shao ◽  
Sairah Sharif ◽  
Hequn Zou ◽  
...  

Abstract Background Peritoneal fibrosis is the most common complication of peritoneal dialysis, but there is currently no effective treatment. We previously reported that suramin pretreatment prevents the development of peritoneal fibrosis in a rat model of peritoneal fibrosis induced by chlorhexidine gluconate (CG). Here, we further examined the effectiveness of delayed administration of suramin on peritoneal fibrosis and the mechanism (s) involved in this process. Methods In the rat model of peritoneal fibrosis induced by CG, suramin or saline was administered at day 21 and 28. All rats were then sacrificed to collect peritoneal tissues for Western blot analysis and histological staining at day 35. Results Our results demonstrated that delayed administration of suramin starting at 21 days following CG injection can ameliorate peritoneal damage, with greater efficacy after two injections. Suramin also reduced the expression of α-smooth muscle actin, Collagen 1, and Fibronectin and suppressed phosphorylation of Smad-3, epidermal growth factor receptor (EGFR), signal transducers, activator of transcription 3 (STAT3) as well as extracellular signal-regulated kinases 1/2 (ERK 1/2) in the peritoneum injured with CG. Moreover, delayed administration of suramin inhibited overproduction of transforming growth factor-β1(TGF-β1) and expression of several pro-inflammatory cytokines, including monocyte chemoattractant protein-1, tumor necrosis factor-α, interleukin-1, and interleukin-6. Conclusions Our results indicated that suramin can attenuate progression of peritoneal fibrosis by a mechanism involving inhibition of the TGF-β1/Smad3 and EGFR signaling pathways as well as suppression of multiple proinflammatory cytokines. Thus, suramin may have the potential to offer an effective treatment for peritoneal fibrosis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Shouguo Yang ◽  
Guanggen Cui ◽  
Ramin Beygui ◽  
Fardad Esmailian ◽  
Abbas Ardehali ◽  
...  

Background The underlying mechanism of thoracic aortic aneurysm (TAA) and dissection(TAD) was undetermined, and one controversy lies in whether they represent the different dvelopement period of the same disorder or totally diferent diseases. This study is in aim to compare the expression and distribution of Transforming Growth Factors(TGF) β1 in the aortic wall of TAA versus TAD patients. Method Aortic specimens were obtained from patients underwent to aortic procedures for TAA (n=38) and TAD (n=20) at UCLA , and control aorta (CN) from organ donnor (n=20). Double immunofluorescent stainning of TGF-β1 and α-smooth muscle actin were performed with paraffin embeded slides for all aortic samples and semiquantified by fluorescent intensity analysis. Histopathologic examination were performed with HE, Verhoeff van-Gieson and Masson’s trichrome stain. Results TAA and TAD patients exhibited an up-regulation of TGF-β1 to 120.3% and 109.6% compared with CN separately (P<0.05), with TAA higher than TAD (P<0.05). TGF-β1 distributed unevenly across aortic wall with the highest levels expression in tunica media, followed by intima then adventitia. In intima, TGF-β1 was expressed at the same level for TAD as CN, but was increased to 115.2% for TAA compared to CN (P<0.05). In media, TGF-β1 increased by 127.2% in TAA and 116.1% in TAD compared to CN (P<0.01), with TAA being higher than TAD (P<0.05). In adventitia, TGF- β1 was up-regulated to 119.6% and 116.7% for TAA and TAD compared to CN (P<0.05). Nucleus density analysis showed cellular plasia in adventitia of TAA and TAD than CN (P<0.05 ), while TAD patients demonstrated a higher nucleus density than TAA in intima and adventitia (P<0.05). α-actin was increased in media of TAA and TAD to 164.5% and 120% than CN (P<0.01 and P<0.05). Attenuated and interrupted elastin and mild to severe cystic medial degeneration were characteristic histopathologic finding in 29 (76.3%) TAA and 17(85%) TAD patients. Conclusions TGF- β1 expression was up-regulated in aortic wall of TAA and TAD compared to CN. The significant higher levels of TGF- β1 in intima and media in TAA versus TAD patients implicated a probable positive effect of TGF- β1 to maintain aortic wall integrity, and/or greater comsamption of TGF- β1 in the aortic dissection.


2018 ◽  
Vol 48 (6) ◽  
pp. 456-464 ◽  
Author(s):  
Jin Sug Kim ◽  
Kyung Sook Cho ◽  
Seon Hwa Park ◽  
Sang Ho Lee ◽  
Ji Hwan Lee ◽  
...  

Background: Peritoneal fibrosis is a devastating complication of peritoneal dialysis. However, its precise mechanism is unclear, and specific treatments have not yet been established. Recent evidence suggests that the sonic hedgehog (SHH) signaling pathway is involved in tissue fibrogenesis. Drugs that inhibit this pathway are emerging in the field of anti-fibrosis therapy. Itraconazole, an anti-fungal agent, was also recently recognized as an inhibitor of the SHH signaling pathway. In this study, we used a mouse model to investigate whether the SHH signaling pathway is involved in the development of peritoneal fibrosis and the effects of itraconazole on peritoneal fibrosis. Methods: Peritoneal fibrosis was induced by intraperitoneal (IP) injection of 0.1% chlorhexidine gluconate (CG) solution every other day for 4 weeks, with or without itraconazole treatment (20 mg/kg, IP injection on a daily basis). Male C57BL/6 mice were divided into 4 groups: saline group, saline plus itraconazole group, CG group, and CG plus itraconazole group. Isotonic saline was administered intraperitoneally to the control group. The peritoneal tissues were evaluated for histological changes, expression of fibrosis markers, and the main components of the SHH signaling pathway. Results: Peritoneal thickening was evident in the CG group and was significantly decreased by itraconazole administration (80.4 ± 7.7 vs. 28.2 ± 3.8 µm, p < 0.001). The expression of the following SHH signaling pathway components was upregulated in the CG group and suppressed by itraconazole treatment: SHH, patched, smoothened, and glioma-associated oncogene transcription factor 1. The IP injection of CG solution increased the expression of fibrosis markers such as α-smooth muscle actin and transforming growth factor-β1 in the peritoneal tissues. Itraconazole treatment significantly decreased the expression of these markers. Conclusion: Our study provides the first evidence that the SHH signaling pathway may be implicated in peritoneal fibrosis. It also demonstrates that itraconazole treatment has protective effects on peritoneal fibrosis through the regulation of the SHH signaling pathway. These findings suggest that blockage of the SHH signaling pathway is a potential therapeutic strategy for peritoneal fibrosis.


2005 ◽  
Vol 289 (6) ◽  
pp. L937-L945 ◽  
Author(s):  
Praveen K. Vayalil ◽  
Mitchell Olman ◽  
Joanne E. Murphy-Ullrich ◽  
Edward M. Postlethwait ◽  
Rui-Ming Liu

Transforming growth factor (TGF)-β plays an important role in tissue fibrogenesis. We previously demonstrated that reduced glutathione (GSH) supplementation blocked collagen accumulation induced by TGF-β in NIH-3T3 cells. In the present study, we show that supplementation of GSH restores the collagen degradation rate in TGF-β-treated NIH-3T3 cells. Restoration of collagen degradation by GSH is associated with a reduction of type I plasminogen activator inhibitor (PAI)-1 expression/activity as well as recovery of the activities of cell/extracellular matrix-associated tissue-type plasminogen activator and plasmin. Furthermore, we find that NIH-3T3 cells constitutively express plasminogen mRNA and possess plasmin activity. Blockade of cell surface binding of plasminogen/plasminogen activation with tranexamic acid (TXA) or inhibition of plasmin activity with aprotinin significantly reduces the basal level of collagen degradation both in the presence or absence of exogenous plasminogen. Most importantly, addition of TXA or active PAI-1 almost completely eliminates the restorative effects of GSH on collagen degradation in TGF-β treated cells. Together, our results suggest that the major mechanism by which GSH restores collagen degradation in TGF-β-treated cells is through blocking PAI-1 expression, leading to increased PA/plasmin activity and consequent proteolytic degradation of collagens. This study provides mechanistic evidence for GSH's putative therapeutic effect in the treatment of fibrotic disorders.


2017 ◽  
Vol 28 (05) ◽  
pp. 420-425 ◽  
Author(s):  
Xiao-Hui Tan ◽  
Chun-Lan Long ◽  
De-Ying Zhang ◽  
Tao Lin ◽  
Da-Wei He ◽  
...  

Introduction Several urethroplasties have been employed in the surgical treatment of hypospadias. Neourethral strictures are among the most common postoperative complications that often require reoperation. Materials and Methods We created a hypospadias model in New Zealand white male rabbits through a hypospadias-like defect and acute repair. A total of 24 animals were randomly allocated into three groups: tubularized incised-plate urethroplasty (TIPU) group (8), perimeatal-based flap urethroplasty (Mathieu) group (8), onlay island flap urethroplasty (onlay) group (8), and corresponding surgical procedures were immediately performed to reconstruct neourethra. The rabbits were killed postoperatively at 5 days, 2 weeks, 6 weeks, and 3 months, respectively. The penile tissue was harvested for histological and biochemical investigations to evaluate the expressions of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMactin) in all groups. Results All rabbits were operated on uneventfully. The amount of collagen content was increased in the Mathieu and onlay groups than in the TIPU group (p < 0.05). Biochemical analysis showed that the expression of TGF-β1 in the TIPU group was decreased compared with the two other groups at 2 or 6 weeks postoperatively (p < 0.01). The expression pattern regarding α-SMactin was similar at 6 weeks or 3 months postoperatively (p < 0.01). Conclusion The neourethra repaired by TIPU was practically resumed to normal anatomy and scarring was less apparent than the two other groups. Therefore, TIPU is considered as a relatively rational approach for hypospadias repair. The activity of fibroblasts has been increased in the long term, which may be the pathogenesis of neourethral stricture following hypospadias repair.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1682
Author(s):  
Vincent Yeung ◽  
Sriniwas Sriram ◽  
Jennifer A. Tran ◽  
Xiaoqing Guo ◽  
Audrey E. K. Hutcheon ◽  
...  

Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis—ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.


Sign in / Sign up

Export Citation Format

Share Document