scholarly journals Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-αProduction and Inhibiting NF-κB and Caspase-3 Expression

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Nagla A. El-Shitany ◽  
Karema El-Desoky

The Food and Drug Administration recently warned of the fatal cardiovascular risks of azithromycin in humans. In addition, a recently published study documented azithromycin-induced cardiotoxicity in rats. This study aimed to justify the exact cardiovascular events accompanying azithromycin administration in rats, focusing on electrocardiographic, biochemical, and histopathological changes. In addition, the underlying mechanisms were studied regarding reactive oxygen species production, cytokine release, and apoptotic cell-death. Finally, the supposed protective effects of both carvedilol and vitamin C were assessed. Four groups of rats were used: (1) control, (2) azithromycin, (3) azithromycin + carvedilol, and (4) azithromycin + vitamin C. Azithromycin resulted in marked atrophy of cardiac muscle fibers and electrocardiographic segment alteration. It increased the heart rate, lactate dehydrogenase, creatine phosphokinase, malondialdehyde, nitric oxide, interleukin-1 beta (IL1-β), tumor necrosis factor alpha (TNF-α), nuclear factor kappa beta (NF-κB), and caspase-3. It decreased reduced glutathione, glutathione peroxidase, and superoxide dismutase. Carvedilol and vitamin C prevented most of the azithromycin-induced electrocardiographic and histopathological changes. Carvedilol and vitamin C decreased lactate dehydrogenase, malondialdehyde, IL1-β, TNF-α, NF-κB, and caspase-3. Both agents increased glutathione peroxidase. This study shows that both carvedilol and vitamin C protect against azithromycin-induced cardiotoxicity through antioxidant, immunomodulatory, and antiapoptotic mechanisms.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Marwa M. M. Refaie ◽  
Entesar F. Amin ◽  
Nashwa F. El-Tahawy ◽  
Aly M. Abdelrahman

Nephrotoxicity is one of the limiting factors for using doxorubicin (DOX). Interleukin 1 has major role in DOX-induced nephrotoxicity, so we investigated the effect of interleukin 1 receptor antagonist diacerein (DIA) on DOX-induced nephrotoxicity. DIA (25 and 50 mg/kg/day) was administered orally to rats for 15 days, in the presence or absence of nephrotoxicity induced by a single intraperitoneal injection of DOX (15 mg/kg) at the 11th day. We measured levels of serum urea, creatinine, renal reduced glutathione (GSH), malondialdehyde (MDA), total nitrites (NOx), catalase, and superoxide dismutase (SOD). In addition, caspase-3, tumor necrosis factor alpha (TNFα), nuclear factor kappa B (NFκB) expressions, and renal histopathology were assessed. Our results showed that DOX-induced nephrotoxicity was ameliorated or reduced by both doses of DIA, but diacerein high dose (DHD) showed more improvement than diacerein low dose (DLD). This protective effect was manifested by significant improvement in all measured parameters compared to DOX treated group by using DHD. DLD showed significant improvement of creatinine, MDA, NOx, GSH, histopathology, and immunohistochemical parameters compared to DOX treated group.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986417
Author(s):  
Beibei Zhang ◽  
Mengnan Zeng ◽  
Meng Li ◽  
Wenjing Chen ◽  
Benke Li ◽  
...  

This study investigated the protective effects of guaiane-type sesquiterpenoids isolated from Dendranthema morifolium (Ramat.) S. Kitam flowers on lipopolysaccharide (LPS)-induced injury in H9c2 cardiomyocyte. Cell viability was determined by thiazolyl blue tetrazolium bromide (MTT). The content of released tumor necrosis factor alpha (TNF- α) and interleukin 6 (IL-6) was evaluated by enzyme-linked immunosorbent assay. The levels of lactate dehydrogenase (LDH) and creatine phosphate kinase (CK) were measured by using commercial available kits. The protein expression levels of pelF2 α, GRP78, Bax, caspase-3, caspase-9, Bcl-2, LC3-II, and p62 were measured by in-cell Western. Flow cytometry was used to detect H9c2 cardiomyocyte apoptosis. Compounds 5, 7, 1, 8, and 2 exhibited the effects of cardioprotection and activity sequence enhancement. The levels of IL-6, TNF- α, LDH, CK, pelF2 α, GRP78, Bax, caspase-3, caspase-9, p62, and H9c2 cardiomyocyte apoptosis were increased in LPS-treated H9c2 cardiomyocyte, while those of Bcl-2 and LC3-II were decreased. These effects could be effectively reversed by compounds 5, 7, 1, 8, and 2. Results demonstrated that the guaiane-type sesquiterpenoids could prevent LPS-induced injury in cardiomyocyte by decreasing endoplasmic reticulum (ER) stress, apoptosis, and autophagy as well as downregulating the inflammatory mediators. In addition, the active groups of guaiane-type sesquiterpenoids might be the angelate at C-8 and the exocyclic double bond at C-11.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Manal El-khadragy ◽  
Wafa A. Al-Megrin ◽  
Norah A. AlSadhan ◽  
Dina M. Metwally ◽  
Rehab E. El-Hennamy ◽  
...  

Exposure to lead (Pb) causes multiorgan dysfunction including reproductive impairments. Here, we examined the protective effects of coenzyme Q10 (CoQ10) administration on testicular injury induced by lead acetate (PbAc) exposure in rats. This study employed four experimental groups (n=7) that underwent seven days of treatment as follows: control group intraperitoneally (i.p.) treated with 0.1 ml of 0.9% NaCl containing 1% Tween 80 (v:v), CoQ10 group that was i.p. injected with 10 mg/kg CoQ10, PbAc group that was i.p. treated with PbAc (20 mg/kg), and PbAc+CoQ10 group that was i.p. injected with CoQ10 2 h after PbAc. PbAc injection resulted in increasing residual Pb levels in the testis and reducing testosterone, luteinizing hormone, and follicle-stimulating hormone levels. Additionally, PbAc exposure resulted in significant oxidative damage to the tissues on the testes. PbAc raised the levels of prooxidants (malondialdehyde and nitric oxide) and reduced the amount of endogenous antioxidative proteins (glutathione and its derivative enzymes, catalase, and superoxide dismutase) available in the cell. Moreover, PbAc induced the inflammatory response as evidenced by the upregulation of inflammatory mediators (tumor necrosis factor-alpha and interleukin-1 beta). Further, PbAc treatment induced apoptosis in the testicular cells, as indicated by an increase in Bax and caspase 3 expression, and reduced Bcl2 expression. CoQ10 supplementation improved testicular function by inhibiting Pb accumulation, oxidative stress, inflammation, cell death, and histopathological changes following PbAc exposure. Our findings suggest that CoQ10 can act as a natural therapeutic agent to protect against the reproductive impairments associated with PbAc exposure.


1997 ◽  
Vol 41 (2) ◽  
pp. 308-313 ◽  
Author(s):  
T Matsumoto ◽  
K Tateda ◽  
S Miyazaki ◽  
N Furuya ◽  
A Ohno ◽  
...  

We evaluated the protective effect of fosfomycin (FOM) and an enantiomer of fosfomycin [FOM (+); an isomer of FOM with no bactericidal activity] on murine gut-derived sepsis caused by Pseudomonas aeruginosa. Endogenous bacteremia was induced by administering cyclophosphamide (CY) and ampicillin to specific-pathogen-free mice fed P. aeruginosa. Treatment of mice with FOM at 250 mg/kg of body weight per day twice a day after the second CY administration significantly increased the survival rate compared to that for control mice treated with saline. Treatment with FOM (+) at 20 and 100 mg/kg also significantly increased the survival rate (from 30% for control mice to 80% for treated mice). The bacterial counts in the liver and blood were both significantly lower in FOM(+)-treated mice in comparison with those in liver and blood of saline-treated control mice. FOM(+) administration affected neither the bacterial colonization in the intestinal tract nor the leukocyte counts in the peripheral blood of the mice. After intravascular inoculation of P. aeruginosa, treatment of mice with FOM (+) did not enhance bacterial clearance from the blood of mice pretreated or not enhance bacterial clearance from the blood of mice pretreated or not pretreated with CY, FOM(+) significantly suppressed tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 levels in the serum of mice after gut-derived sepsis. These results indicate that both FOM and FOM(+) have protective effects against P. aeruginosa bacteremia, despite a lack of specific activity of FOM(+), and suggest that FOM may possess immunomodulating activity and that it induces a protective effect. The protective mechanism is speculated to be that FOM modulates the vivo production of inflammatory cytokines.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Arduino A. Mangoni ◽  
Angelo Zinellu ◽  
Salvatore Sotgia ◽  
Ciriaco Carru ◽  
Matteo Piga ◽  
...  

There is good epidemiological evidence that patients with autoimmune rheumatic disease states, particularly rheumatoid arthritis, have an increased risk of cardiovascular morbidity and mortality when compared to the general population. The presence of a chronic systemic proinflammatory state in this patient group disrupts the structural and functional integrity of the endothelium and the arterial wall, favouring the onset and progression of atherosclerosis. A significant role in the detrimental effects of inflammation on endothelial function and vascular homeostasis is played by specific proatherosclerotic cytokines such as tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). Recent systematic reviews and meta-analyses have shown that treatment with methotrexate, a first-line disease-modifying antirheumatic drug (DMARD), is associated with a significant reduction in atherosclerosis-mediated cardiovascular events, such as myocardial infarction and stroke, and mortality, when compared to other DMARDs. This suggests that methotrexate might exert specific protective effects against vascular inflammation and atherosclerosis in the context of autoimmune rheumatic disease. This review discusses the available evidence regarding the potential antiatherosclerotic effects of methotrexate through the inhibition of TNF-α, IL-1, and IL-6 and provides suggestions for future experimental and human studies addressing this issue.


2020 ◽  
Vol 39 (5) ◽  
pp. 721-733 ◽  
Author(s):  
D-B Jeon ◽  
H-G Shin ◽  
B-W Lee ◽  
S-H Jeong ◽  
J-H Kim ◽  
...  

Enterococcus faecalis is a facultative anaerobic gram-positive commensal bacterium common in the gastrointestinal tract of animals and humans. This study aimed to investigate the protective effects of heat-killed E. faecalis EF-2001 (EF-2001) on acute gastric ulcer using a murine model of ethanol (EtOH)-induced acute gastric injury. EF-2001 (20, 40, and 80 mg/kg/day) was administered by oral gavage for 5 days before EtOH treatment (10 mL/kg body weight). EF-2001 effectively attenuated EtOH-induced gastric mucosal injury with reduced gastric mucosal ulcer and histological damage score. Pretreatment of EF-2001 markedly suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK1/2, JNK, and p38MAPK). In addition, EF-2001 significantly inhibited phosphorylation of nuclear factor kappa B (NF-κB) and subsequently suppressed the upregulation of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in gastric tissues. Taken together, these results suggest that EF-2001 exerts a gastroprotective effect against acute gastric injury, and the underlying mechanism might be associated with the suppression of MAPKs and NF-κB signaling and consequent reduction of pro-inflammatory mediators or cytokines.


Author(s):  
Hasan Akduman ◽  
Cüneyt Tayman ◽  
Ufuk Çakir ◽  
Esra Çakir ◽  
Dilek Dilli ◽  
...  

Background/aim: We aimed to ascertain the effects of astaxanthin on the lungs of rat pups with bronchopulmonary dysplasia (BPD) induced by hyperoxia and lipopolysaccharide (LPS). Materials and methods: Forty-two newborn Wistar rats born to spontaneous pregnant rats were divided into three groups: Hyperoxia (95% O2) + lipopolysaccharide (LPS) group, hyperoxia + LPS + astaxhantin group and control: no treatment group (21% O2). Pups in the hyperoxia + LPS + astaxanthin group were given 100 mg/kg/day oral astaxanthin from the first day to the fifth day. Histopathologic and biochemical evaluations including glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS), lipid hydroperoxide (LPO), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), myeloperoxidase (MPO), total thiol, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL1β) and caspase-3 activities were performed. Results: A better survival rates and weight gain were demonstrated in the hyperoxia + LPS + astaxanthin group (p <0.001). In the histopathologic evaluation, the severity of lung damage was significantly reduced in the hyperoxia+LPS+astaxanthin group, as well as decreased apoptosis (ELİSA for caspase-3) (p <0.001). The biochemical analyses of lung tissues TAS, GSH, Total thiol levels were significantly higher in the astaxanthin treated group compared to hyperoxia + LPS group (p <0.05) while TOS, AOPP, LPO, 8-OHdG, MPO levels were significantly lower (p <0.001). In addition, unlike the hyperoxia + LPS group, TNF-α and IL-1β levels in lung tissue were significantly lower in the astaxanthin-treated group (p <0.001). Conclusion: Astaxanthin was shown to reduce lung damage caused by inflammation and hyperoxia with its antiinflammatory, anti-oxidant, anti-apoptotic properties and to protect the lung from severe destruction.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Bin Han ◽  
Huizhu Huang ◽  
Zhong Li ◽  
Mengjuan Gong ◽  
Wan Shi ◽  
...  

The present study was undertaken to evaluate the therapeutic effects of Huzhang-Guizhi herb pair (HG), firstly included in Hu-Zhang Power documented in Taiping Shenghui Fang, on monosodium urate (MSU) crystals-induced gouty arthritis in rats. We found that pretreatment with HG in rats with gouty arthritis could significantly attenuate the ankle joint swelling, and this beneficial antigout effect might be mediated, at least in part, by inhibiting tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) production in synovial fluid as well as nuclear transcription factor-κB p65 (NF-κB p65) protein expression in synovial tissue. Moreover, metabonomic analysis demonstrated that 5 and 6 potential biomarkers associated with gouty arthritis in plasma and urine, respectively, which were mainly involved in energy metabolism, amino acid metabolism, and gut microbe metabolism, were identified. HG could reverse the pathological process of MSU-induced gouty arthritis through regulating the disturbed metabolic pathways. These results provided important mechanistic insights into the protective effects of HG against MSU-induced gouty arthritis in rats.


2016 ◽  
Vol 39 (4) ◽  
pp. 1453-1462 ◽  
Author(s):  
Feng Shan ◽  
Rui Yang ◽  
Tiemei Ji ◽  
Fengjun Jiao

Background/Aims: The study was aimed to investigate if vitamin C could exert protective effects on development of eryptosis caused by glucose-6-phosphate dehydrogenase (G6PD) deficiency and hydrogen peroxide. Methods: Isolated erythrocytes with different G6PD activity (normal or deficient) were divided into various groups treated by either Vitamin C or H2O2. Phosphatidylserine (PS) extroversion rate was detected by Annexin V binding. The intracellular Ca2+ concentration was detected by Fluo3-fluorescence, and western blot was used to detect the expression of apoptosis factor caspase 3. Results: Compared with the blank group, the PS extroversion rate (P < 0.001), intracellular Ca2+ concentration (P < 0.001) and active caspase 3 expression level (P < 0.05) of erythrocytes significantly increased after treatment of 0.05% H2O2. Then the index of eryptosis significantly decreased after erythrocytes were treated with Vitamin C (1 mg/ml) for 30 min (all P < 0.05). The decline in erythrocytes with G6PD normal activity was more significant than those with G6PD deficiency. Conclusion: Vitamin C could effectively inhibit the eryptosis contributed by H2O2 oxidative stress, and the suppression on eryptosis with G6PD normal activity was more effective than that with G6PD deficiency.


2010 ◽  
Vol 298 (6) ◽  
pp. C1501-C1509 ◽  
Author(s):  
F. V. Härtel ◽  
M. Holl ◽  
M. Arshad ◽  
M. Aslam ◽  
D. Gündüz ◽  
...  

Ischemia-induced apoptosis of endothelial cells may contribute to tissue injury, organ failure, and transplantation rejection. However, little is known about survival mechanisms capable to counteract endothelial apoptosis. This study investigated the potential role of an endogenous anti-apoptotic response elicited by transient hypoxia, capable to avert ongoing apoptosis in endothelial cells. Experiments were carried out in three different types of cultured endothelial cells (human umbilical vein, pig aorta, and from rat coronary microvasculature). As a pro-apoptotic challenge endothelial cells were cultured in serum-free medium and subjected to hypoxia for 2 h. We found that transient hypoxia reduced caspase 3 activation within 1 h of hypoxia. Accordingly, the number of apoptotic cells was reduced after 24 h of reoxygenation. This was true for all three cell types analyzed. Analysis of Akt and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways revealed that hypoxia induced a transient activation of ERK 2 but not of Akt. ERK 2 phosphorylation preceded the phosphorylation of pro-apoptotic molecule Bad at Ser112, an inhibitory phosphorylation site specific for ERK. The protective effects of hypoxia regarding Bad phosphorylation, caspase 3 activation, and apoptosis were abolished by MEK 1/2 inhibitors, PD98059 or UO126, as well as by antisense oligonucleotides directed against ERK 1/2. Furthermore, inhibition of this pathway inhibited hypoxia-induced increase in mitochondrial membrane potential. The present study demonstrates that transient hypoxia induces a novel survival mechanism that protects endothelial cells against apoptosis. This endogenous process involves MEK/ERK-mediated inhibition of the pro-apoptotic molecule Bad and caspase 3.


Sign in / Sign up

Export Citation Format

Share Document