scholarly journals Shenqiwan Ameliorates Renal Fibrosis in Rats by Inhibiting TGF-β1/Smads Signaling Pathway

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hongshu Chen ◽  
Yiqing Xu ◽  
Yuanxiao Yang ◽  
Xiaojie Zhou ◽  
Shijie Dai ◽  
...  

Epithelial-mesenchymal transition (EMT) refers to the transition of epithelial cells into mesenchymal cells. Emerging evidence suggests that EMT is a key point in renal interstitial fibrosis (RIF). Traditional Chinese Medicine Shenqiwan (SQW) is widely used in clinical treatment of chronic kidney disease, but the underlying mechanism remains unclear. The purpose of this study is to investigate the effect of SQW on renal fibrosis and its association with TGF-β1/Smads signaling pathway. A rat model of adenine (150 mg/kg) was established and intragastrically treated with various concentrations of SQW at dose of 1.5 g/kg, 3 g/kg, and 6 g/kg. Control group and model group were given the same volume of saline. Meanwhile, the positive control group was treated with Enalapril (4 mg/kg). Animals were sacrificed on 21st day after administration. The results showed that SQW could significantly relieve renal pathological damage caused by adenine, increase gene and protein expression of E-cadherin, and decrease the expression of Vimentin in kidney samples. In addition, SQW efficiently inhibited the mRNA and protein expression of p-Smad2/3 by upregulating Smad7. These results suggest that SQW could slow down the progression of renal fibrosis, possibly by inhibiting TGF-β1/Smads signaling pathway.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruochen Qi ◽  
Jiyan Wang ◽  
Yamei Jiang ◽  
Yue Qiu ◽  
Ming Xu ◽  
...  

AbstractRenal fibrosis is the common feature of all progressive kidney diseases and exerts great burden on public health worldwide. The maladaptive repair mechanism of tubular epithelial cells, an important mediator of renal fibrogenesis, manifests with partial epithelial–mesenchymal transition (EMT) and cell cycle arrest. The aim of this study is to investigate the possible correlation between partial EMT and cell cycle arrest, and elucidate the underlying mechanism. We examined human kidney allograft samples with interstitial fibrosis and three mice renal fibrosis models, unilateral ureter obstruction (UUO), ischemia–reperfusion injury, and Adriamycin nephropathy. The partial EMT process and p53–p21 axis were elevated in both human allograft with interstitial fibrosis, as well as three mice renal fibrosis models, and showed a time-dependent increase as fibrosis progressed in the UUO model. Snai1 controlled the partial EMT process, and led to parallel changes in renal fibrosis, G2/M arrest, and inflammation. p53–p21 axis arrested cell cycle at G2/M, and prompted partial EMT and fibrosis together with inflammation. NF-κB inhibitor Bay11-7082 disrupted the reciprocal loop between Snai1-induced partial EMT and p53–p21-mediated G2/M arrest. We demonstrated the reciprocal loop between partial EMT and G2/M arrest of TECs during renal fibrogenesis and revealed NF-κB-mediated inflammatory response as the underlying mechanism. This study suggests that targeting NF-κB might be a plausible therapeutic strategy to disrupt the reciprocal loop between partial EMT and G2/M arrest, therefore alleviating renal fibrosis.


2020 ◽  
pp. 096032712095215
Author(s):  
H-J Wang ◽  
H Liu ◽  
Y-H Lin ◽  
S-J Zhang

Diabetic nephropathy (DN) is primary cause of end-stage renal disease. A previous study has shown that miR-32-5p (miR-32) is highly expressed in kidney tissue during chronic allograft dysfunction with interstitial fibrosis and tubular atrophy. However, the role of miR-32-5p (miR-32) in DN is still unclear. In this study, streptozotocin-induced DN rat models and high glucose (HG)-incubated human kidney proximal tubular epithelial (HK-2) cells were established to investigate the role and underlying mechanisms of miR-32 in DN. Results of real-time PCR revealed that miR-32 levels were greatly increased in DN rats and HG-incubated HK-2 cells. Downregulation of miR-32 effectively relieved HG-induced autophagy suppression, fibrosis, epithelial-mesenchymal transition (EMT) and inflammation in HK-2 cells. Besides, miR-32 overexpression significantly down-regulated the expression of mothers against decapentaplegic homolog 7 (SMAD7), whereas knockdown of miR-32 markedly up-regulated the level of SMAD7. Dual-luciferase reporter gene assay confirmed that SMAD7 was a target of miR-32. Reintroduction of SMAD7 expression rescued miR-32-induced HK-2 cells autophagy suppression, EMT and renal fibrosis. Our findings indicate that miR-32 may play roles in the progression of EMT and fibrosis in DN.


2017 ◽  
Vol 46 (4) ◽  
pp. 333-342 ◽  
Author(s):  
Huifang Liu ◽  
Jiachuan Xiong ◽  
Ting He ◽  
Tangli Xiao ◽  
Yan Li ◽  
...  

Background: Hyperuricemia is an independent risk factor for causing chronic kidney disease and contributes to kidney fibrosis. After urate crystals get deposited in the kidney, they can cause hyperuricemia nephropathy, leading to glomerular hypertrophy and renal tubular interstitial fibrosis. Recent data showed that uric acid (UA) could induce epithelial mesenchymal transition (EMT) of renal tubular cells, in which NRLP3 inflammatory pathway was involved. However, whether TLR4/NF-κB signaling pathway is also involved in EMT of renal tubular cells induced by UA is not clear. Methods: Human renal tubular epithelial cells (HK-2) were directly treated with UA and the phenotypic transition was detected by morphological changes and the molecular markers of EMT. The activation of the TLR4/NF-κB signaling pathway induced by UA was measured by Western blot and its involvement was further confirmed by the inhibition of NF-κB activation or knockdown of toll like receptor 4 (TLR4) expression. Results: UA induced obvious morphological changes of HK-2 cell, accompanied with altered molecular markers of EMT including fibronectin, α-SMA and E-cadherin. In addition, UA significantly upregulated the gene expression of interleukin-1β and tumor necrosis factor-α in a time- and dose-dependent manner. Furthermore, UA significantly activated the TLR4/NF-κB signaling pathway in HK-2 cells, while the inhibition of the TLR4 expression by siRNA and NF-κB activation by PDTC significantly attenuated EMT induced by UA in HK-2 cells. Conclusions: UA can induce EMT in renal tubular epithelial cells by the activation of the TLR4/NF-κB signaling pathway, and the targeted intervention of the TLR4/NF-κB signaling pathway might effectively inhibit UA-induced renal interstitial fibrosis mediated by EMT.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fei Gao ◽  
Yun Zhang ◽  
Zhizhou Yang ◽  
Mengmeng Wang ◽  
Zhiyi Zhou ◽  
...  

Arctigenin (ATG), a major bioactive substance of Fructus Arctii, counters renal fibrosis; however, whether it protects against paraquat (PQ)-induced lung fibrosis remains unknown. The present study was to determine the effect of ATG on PQ-induced lung fibrosis in a mouse model and the underlying mechanism. Firstly, we found that ATG suppressed PQ-induced pulmonary fibrosis by blocking the epithelial-mesenchymal transition (EMT). ATG reduced the expressions of Vimentin and α-SMA (lung fibrosis markers) induced by PQ and restored the expressions of E-cadherin and Occludin (two epithelial markers) in vivo and in vitro. Besides, the Wnt3a/β-catenin signaling pathway was significantly activated in PQ induced pulmonary fibrosis. Further analysis showed that pretreatment of ATG profoundly abrogated PQ-induced EMT-like phenotypes and behaviors in A549 cells. The Wnt3a/β-catenin signaling pathway was repressed by ATG treatment. The overexpression of Wnt3a could weaken the therapeutic effect of ATG in A549 cells. These findings suggested that ATG could serve as a new therapeutic candidate to inhibit or even reverse EMT-like changes in alveolar type II cells during PQ-induced lung fibrosis, and unraveled that the Wnt3a/β-catenin pathway might be a mechanistic tool for ATG to control pulmonary fibrosis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pei Lu ◽  
Yi-min Shen ◽  
Ting Hua ◽  
Ting Pan ◽  
Gang Chen ◽  
...  

Abstract Background The purpose of the current study was to explore the role and underlying mechanism of FGF-2 in dexamethasone (DEX)-induced apoptosis in MC3T3-E1 cells. Methods GSE21727 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) by the limma/R package. MC3T3-E1 cells were exposed to DEX at different concentrations (0, 10−8, 10−7, 10−6, 10−5 and 10−4 mol/L), and cell viability, flow cytometry and TUNEL assay were used to detect cell proliferation and apoptosis. An FGF-2-pcDNA3 plasmid (oe-FGF-2) was used to overexpress FGF-2, and western blotting was conducted to detect protein expression. Results We found that FGF-2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX downregulated FGF-2 gene and protein expression, inhibited viability and induced MC3T3-E1 cell apoptosis. Overexpression of FGF-2 reversed DEX-induced apoptosis in MC3T3-E1 cells. FGF-2-mediated anti-apoptosis was impaired by inactivating the PI3K/AKT pathway with LY294002. Moreover, overexpression of FGF2 delayed the progression of DEX-induced osteonecrosis of the femoral head (ONFH) animal model by regulation PI3K/Akt signaling pathway. Conclusion In conclusion, FGF-2 is effective at inhibiting DEX-induced MC3T3-E1 cell apoptosis through regulating PI3K/Akt signaling pathway.


2021 ◽  
Author(s):  
Li-Na Gao ◽  
Man Hao ◽  
Xiao-Hui Liu ◽  
Li Zhang ◽  
Yan Dong ◽  
...  

Abstract Background There is an urgent need to identify potential targets in anticancer therapy to improve the survival and prognosis of patients with ovarian cancer (OC). Herein, we investigated the functional significance of chemokine (C-X-C motif) ligand 14 (CXCL14) in OC cell growth and epithelial–mesenchymal transition (EMT).MethodsqRT PCR and western blotting was used to detect CXCL14 mRNA level and protein expression, respectively. The functional mechanism of CXCL14 in OC was investigated by CCK-8, colony formation and transwell assays. The protein expression of CXCL14 and β-catenin in OC tissues was determined by immumohistochemical staining.ResultsWe demonstrated that high levels of CXCL14 were associated with a worse prognosis in patients with OC. CXCL14 knockdown considerably restrained the growth and invasion of OC cells in vitro. In contrast, ectopic CXCL14 overexpression yielded the opposite results. Investigations to determine the underlying molecular mechanisms revealed that the Wnt/β-catenin signaling pathway is involved in CXCL14-facilitated OC cell invasiveness.ConclusionThese data collectively demonstrate that CXCL14 contributes to OC cell growth and metastatic potential by regulating the Wnt/β-catenin signaling pathway.


2020 ◽  
Vol 19 (7) ◽  
pp. 1365-1370
Author(s):  
Belikiz Ekem ◽  
Wei Gong ◽  
Lu Han ◽  
Xinmei Wang ◽  
Na Liu ◽  
...  

Purpose: To investigate the effects of zerumbone on cell invasion, epithelial-mesenchymal transition (EMT) and the potential signaling pathway involved in ovarian cancer cells.Methods: Caov-3 cell proliferation was assessed using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide (MTT) assay. Wound healing assay was used to determine Caov-3 cell migration while cell invasion was evaluated using Transwell assay. Protein expression was determinedby western blot.Results: Cell viability was reduced by 5, 10, 20, and 50 μM zerumbone (p < 0.05) in a concentrationdependent manner while cell migration and invasion were inhibited by 10 and 20 μM zerumbone (p < 0.05). Protein expression levels of E-cadherin and cytoplasm β-catenin were upregulated by zerumbone (p < 0.05) in a concentration-dependent manner. On the other hand, protein expression levels of Ncadherin, vimentin, ZEB1, nuclear β-catenin, and c-Myc were suppressed by zerumbone (p < 0.05) also in a concentration-dependent manner.Conclusion: The results demonstrate that zerumbone inhibits cell proliferation, migration and invasion, but represses the EMT process via inactivation of Wnt/β-catenin signaling pathway. Keywords: Zerumbone, Ovarian cancer, Wnt/β-catenin pathway, Epithelial-mesenchymal transition


2020 ◽  
Author(s):  
Jin-Yun Pu ◽  
Li-Xia Wang ◽  
Jie Wang ◽  
Yu Zhang ◽  
Jian-Hua Zhou

AbstractObjectiveWe aimed to explore the role of ubiquitin-specific peptidase-4 (USP4) in TGF-β1 induced epithelial-mesenchymal transition (EMT) during renal fibrosis, and investigated that if Akt inactivation exerted a critical effect on EMT via USP4/TβRI pathway.MethodsUSP4, pAkt and TβRI proteins in the obstructed kidneys from unilateral ureteral obstruction (UUO) rats were detected by immunohistochemistry assay or western blot method. E-cadherin, α-SMA, USP4 and pAkt protein expression in NRK-52E cells at different concentration of TGF-β1 were detected at different time. Further, NRK-52E cells were transfected with USP4-specific siRNA (si-USP4), and then stimulated with 10 ng/ml TGF-β1 for 24h to detect E-cadherin, α-SMA, E-cadherin and TβRI by immunofluorescent double staining assay. Pretreated with PI3K inhibitor LY294002, protein expression levels of pAkt, E-cadherin, α-SMA were detected. Meanwhile, the location of USP4 was visualized by immunofluorescent assay in NRK-52E cells.ResultsThe expression of USP4 and TβRI was significantly upregulated in the tubular epithelial cells of UUO rats. We also found that TGF-β1 upregulated USP4 and activated Akt in NRK-52E cells during EMT. In vitro, downregulation of USP4 inhibited TβRI expression and partially reversed EMT stimulated by TGF-β1. In the meantime, blunted phosphorylation of Akt with LY294002 promoted the E-cadherin expression, and inhibited α-SMA expression in response to TGF-β1. However, inactivation of Akt could reverse EMT process, but failed to induce USP4 to shuttle between the nucleus and the cytoplasm in NRK-52E cells stimulated by TGF-β1.ConclusionsThese data implied that USP4 was a harmful molecule induced by TGF-β1, regulated by Akt activation and promoted TGF-β1-induced EMT via TβRI in tubular epithelial cells during renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document