scholarly journals Investigations on the Hot Stamping of AW-7921-T4 Alloy Sheet

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
M. Kumar ◽  
N. G. Ross

AW-7xxx alloys have been nowadays considered for greater light weighting potential in automotive industry due to its higher strength compared to AW-5xxx and AW-6xxx alloys. However, due to their lower formability the forming processes are still in development. This paper investigates one such forming process called hot stamping. The investigation started by carrying out hot tensile testing of an AW-7xxx alloy, that is, AW-7921 at temperatures between 350°C and 475°C, to measure the strength and formability. Formability was found to improve with increasing temperature and was sensitive to the strain rate. Dynamic recovery is considered as usual reason for the formability improvement. However, examining the precipitation states of the as-received condition and after hot stamping using differential scanning calorimetry (DSC), the dissolution of precipitates was also believed to contribute to this increase in formability. Following solution heat treatment there was no precipitation during cooling across the cooling rates investigated (5–10°C/s). Samples taken from parts hot stamped at 10 and 20 mm s−1 had similar yield strengths. A 3-step paint baking heat treatment yielded a higher postpaint baking strength than a single step treatment.

2018 ◽  
Vol 190 ◽  
pp. 12008
Author(s):  
Benjamin Clausius ◽  
Petra Maier

Flanging is a widespread method in the sheet metal working industry to connect same or different materials by forming. Especially the sealing technology makes high demands on the flanging process: a low sheet thickness of the inner eyelet is necessary for proper sealing. The outer edges of the neck rings are mostly manufactured by shear cutting. The quality of the cut surface and the level of the local strain hardening influence decisively the limit of the flanging process by possible cracking. This paper is focused on the dependencies of these factors regarding thin metal sheets of different materials with a thickness down to 100 μm. It could be shown that strain hardening has a stronger effect on the process limits compared to the notch effect of the sheet edges when using standard values for the clearance of the shear cutting tool. Furthermore, a process is investigated with a partial inductive short-time heat treatment of the most deformed edge area. Due to the low thickness of the material and low heat capacities related thereto, it is possible to integrate a recrystallization annealing as single step into the forming process. As a result, the strain hardening can be removed from the affected zone directly between two forming steps to increase the process limits.


2015 ◽  
Vol 828-829 ◽  
pp. 226-231 ◽  
Author(s):  
Pfarelo Daswa ◽  
Heinrich Möller ◽  
Gonasagren Govender

This paper investigates the optimization of the solution heat treatment parameters of the rheo-high pressure die cast (R-HPDC) 2139 aluminium alloy. Differential Scanning Calorimetry (DSC) and optical microscopy were used to investigate the incidence of incipient melting and therefore determine suitable solution heat treatment temperatures. A three-step solution heat treatment where the alloy was heat treated from 400°C to 513°C using controlled heating conditions and held at 513°C for 2 hours and finally heated up from 513°C to 525°C and held there for 16 hours was done. R-HPDC is known to produce surface liquid segregation and when processing the alloys these areas are most prone to incipient melting. The applicability of a single (525°C for 16h) and three-step solution heat treatments on the R-HPDC 2139 aluminium alloy was also investigated. A single-step solution heat treatment results in incipient melting, whereas this is mostly eliminated using the three-step solution heat treatment. However, a high volume fraction of undissolved phases remain in the liquid segregated areas, even after the three-step solution heat treatment.


2005 ◽  
Vol 6-8 ◽  
pp. 673-680 ◽  
Author(s):  
R.P. Garrett ◽  
J. Lin ◽  
Trevor A. Dean

To overcome the major problems in forming aluminium sheet components, such as springback, low formability and microstructure variation a novel process is proposed in this paper. That is combined Solution Heat Treatment (SHT) hot stamping followed by cold die quenching. To determine the feasibility of such process a series of thermal-mechanical tests have been designed and carried out on aluminium alloy AA6082. Three aspects of the forming process are investigated and represented in the paper. The first is to investigate the effects of SHT proportions on the mechanical properties of the material. The second is the effects of quenching rates on the mechanical properties after SHT. The third is the effect of predeformation after the SHT and the quenching rate on the mechanical properties of the formed parts. Summaries are given for each aspect of the study. These tests are to investigate the effects of Solution Heat Treatment time proportion. Variables are also introduced during the cold die quenching, including clearance between the testpiece and dies as well as the applied load. Finally the relationship between quench rate and predeformation is investigated.


2014 ◽  
Vol 794-796 ◽  
pp. 796-801 ◽  
Author(s):  
Manoj Kumar ◽  
Nikolay Sotirov ◽  
Christian Chimani

High formability is required to stamp aluminium into complex structural automotive components such as the A-pillar and B-pillar. Formability of an Al-Zn-Mg (AA7xxx) alloy sheet is characterised through hot stamping a prototype part and simulating paint baking procedures. The precipitation behaviour is assessed by differential scanning calorimetry and the tensile properties measured between 350°C and 475°C over a range of strain rates from 0.01s-1to 1s-1. Natural ageing was found to increase the hardness of the hot stamped parts due to the formation of GP zone precipitates. A simulated three step paint baking procedure produced η precipitates and resulted in a yield strength and ultimate tensile strength of 480MPa and 512MPa, respectively.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1361
Author(s):  
Shreyas Hebbar ◽  
Lukas Kertsch ◽  
Alexander Butz

A major challenge in processing 7xxx series aluminum alloys is their limited formability at room temperature. In this paper, for the alloys EN AW-7020 and EN AW-7075, various variants of the W-temper forming process are investigated. For both alloys, a good cold formability and a high strength after aging can be achieved. The effects of solution heat treatment or retrogression temperature and holding time, as well as the influence of plastic deformation after quenching, were studied. For various combinations of process parameters, the formability of the as-quenched materials and the hardening performance during artificial aging were examined. For this, hardness measurements and differential scanning calorimetry (DSC) experiments were performed along the entire process chain, to reveal the development of the hardening precipitates. After solution heat treatment and quenching, the yield stress and hardness of both investigated alloys were drastically reduced in comparison to their initial T6 states, while the ductility was significantly increased. By a subsequent simple artificial aging treatment, the same hardness as in the T6 state could be restored. It was observed that plastic deformation immediately after quenching significantly decreased the artificial aging time to achieve the peak hardness. Besides the conventional solution heat treatment process, an alternative retrogression and re-aging procedure was identified for the alloy EN AW-7020. While the heat treatment temperature can be reduced as compared to the conventional solution heat treatment, the formability and hardenability are equally good. In contrast, no such alternative process could be identified for the alloy EN AW-7075.


2012 ◽  
Vol 735 ◽  
pp. 301-306 ◽  
Author(s):  
Hai Jian Liang ◽  
Xiao Wei Wu ◽  
Yong Wang ◽  
Quan Lin Jin ◽  
Zhao Li Ma ◽  
...  

This article describes the high rate superplastic forming. The high rate superplastic forming technology is a new complex process,which integrates hot stamping and superplastic forming .It has feature of rapidity of the hot stamping and character of excellent formability of the superplastic forming.We obtained the best proportion of the hot forming and the superplastic forming through simulation experiment, and formed a car’s abonnet by applying the proportion.Compared with the high rate superplastic forming,the forming quality is better than that of hot forming. and the forming time is less than that of superplastic forming. Result shows that ,the high rate superplastic forming technology can meet the requirements for mass production.


2019 ◽  
Vol 14 ◽  
pp. 155892501989525
Author(s):  
Yu Yang ◽  
Yanyan Jia

Ultrafine crystallization of industrial pure titanium allowed for higher tensile strength, corrosion resistance, and thermal stability and is therefore widely used in medical instrumentation, aerospace, and passenger vehicle manufacturing. However, the ultrafine crystallizing batch preparation of tubular industrial pure titanium is limited by the development of the spinning process and has remained at the theoretical research stage. In this article, the tubular TA2 industrial pure titanium was taken as the research object, and the ultrafine crystal forming process based on “5-pass strong spin-heat treatment-3 pass-spreading-heat treatment” was proposed. Based on the spinning process test, the ultimate thinning rate of the method is explored and the evolution of the surface microstructure was analyzed by metallographic microscope. The research suggests that the multi-pass, medium–small, and thinning amount of spinning causes the grain structure to be elongated in the axial and tangential directions, and then refined, and the axial fiber uniformity is improved. The research results have certain scientific significance for reducing the consumption of high-performance metals improving material utilization and performance, which also promote the development of ultrafine-grain metals’ preparation technology.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1686
Author(s):  
Andrey Galukhin ◽  
Roman Nosov ◽  
Ilya Nikolaev ◽  
Elena Melnikova ◽  
Daut Islamov ◽  
...  

A new rigid tricyanate ester consisting of seven conjugated aromatic units is synthesized, and its structure is confirmed by X-ray analysis. This ester undergoes thermally stimulated polymerization in a liquid state. Conventional and temperature-modulated differential scanning calorimetry techniques are employed to study the polymerization kinetics. A transition of polymerization from a kinetic- to a diffusion-controlled regime is detected. Kinetic analysis is performed by combining isoconversional and model-based computations. It demonstrates that polymerization in the kinetically controlled regime of the present monomer can be described as a quasi-single-step, auto-catalytic, process. The diffusion contribution is parameterized by the Fournier model. Kinetic analysis is complemented by characterization of thermal properties of the corresponding polymerization product by means of thermogravimetric and thermomechanical analyses. Overall, the obtained experimental results are consistent with our hypothesis about the relation between the rigidity and functionality of the cyanate ester monomer, on the one hand, and its reactivity and glass transition temperature of the corresponding polymer, on the other hand.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1958
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Mahbuba Islam ◽  
Liliana Grzeca ◽  
Anna Kaczmarek ◽  
Emilia Fornal

The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document