scholarly journals Synthesis and Characterization of Polypropylene/Ramie Fiber with Hemp Fiber and Coir Fiber Natural Biopolymer Composite for Biomedical Application

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
T. Sathish ◽  
Kumaran Palani ◽  
L. Natrayan ◽  
Anjibabu Merneedi ◽  
Melvin Victor De Poures ◽  
...  

In the current scenario, many natural fibers available in the world can be used in various applications in the day-to-day life of biomedical products, automobile parts, industrial products, etc. Biocomposites can replace or serve as a framework allowing the regeneration of traumatized, degenerated tissues, and organs, thus, improving the patients’ quality of life. This research work is aimed at fabricating and investigating the natural biopolymer composites for biomedical applications. There are two sets of fiber composites fabricated in this research work. Ramie fiber considers a common base fiber for both composites. Hemp fibers and coir fibers were considered as filler in this research work. Biodegradable and bioresorbable polypropylene resins are used to fabricate the biocomposite using the compression moulding technique. Different proportion specimen mechanical properties were compared for bone fixtures and joint applications. The contour plots and bar charts were plotted to identify the variations in the volume percentage. The individual fiber specimens also have significant properties when compared with the composite fibers. Then, the individual superior property-based combinations such as hemp and coir fiber mixed with biodegradable and bioresorbable polypropylene/ramie fiber were recommended to produce joints and bone fixtures to alleviate pain for patients.

2016 ◽  
Vol 2 (3) ◽  
pp. 26
Author(s):  
Alessandra Vilardi

ResumenLa existencia de una gran cantidad de edificios antiguos ha movilizado la investigación para estudiar nuevos sistemas de refuerzo a aquellas construcciones que sean dañadas por decadencia fisiológica o por terremoto. El presente documento demuestra la eficacia de un sistema de refuerzo innovador para los muros de mampostería, constituyentes los elementos estructurales de los edificios históricos. Se hace una comparación entre unas redes bidireccionales de fibras sintéticas tradicionales y las de fibras naturales, ambas pegadas a las dos fachadas del muro con matriz de mortero. El resultado muestra la aplicación de las fibras de cáñamo como refuerzo sísmico y una mayor compatibilidad de estas con el material que caracterizan los edificios antiguos. AbstractThe existence of a large number of old buildings has mobilized research to study new systems of reinforcement to those buildings that are damaged by physiological decay or earthquake. This document demonstrates the effectiveness of an innovative reinforcement system for masonry walls, which are the structural elements of historic buildings. A comparison is made between bidirectional networks of traditional synthetic fibers and those of natural fibers, both glued to the two facades of the wall with mortar matrix. The result shows the application of hemp fibers as seismic reinforcement and a greater compatibility of these with the material that characterize the old buildings.


2021 ◽  
Author(s):  
Mahesh Gund ◽  
R T Vyavahare

In recent years, composite material is used as an alternative material for materials like metal, wood, etc. due to low in weight, strength to weight ratio and stiffness properties. Natural fibers like coir fiber, palm fiber, jute fiber, banana plant fiber, etc have low cost, easy availability and less harmful to human body. Also, carbon fiber having various properties such as high strength to weight ratio, rigidity, good tensile strength, fatigue resistance, fire resistance/not flammable, high thermal conductivity. This research work aims to find out the mechanical properties of Carbon fiber, Coir fiber and Epoxy composite material with different ply orientations angles by using FEA software Ansys APDL R15.0.


2010 ◽  
Vol 112 ◽  
pp. 1-8 ◽  
Author(s):  
Sofien Bouzouita ◽  
Michelle Salvia ◽  
Hachmi Ben Daly ◽  
A. Dogui ◽  
E. Forest

The use of natural fibers as reinforcement in composites is emerging. Several studies are underway to improve the mechanical characteristics of these fibers and its matrix interface properties for better load transfer. However, the treatments generally used are relatively expensive and complicated to apply. This work deals with the effect of new Fibroline process on tensile and interfacial properties of hemp fiber reinforced in polypropylene. Fibroline is a dry powder impregnation method which consists of submitting fibers and polymer powder under strong alternating electric field. Morphology and tensile properties of hemp fibers after different surface treatments (raw, dried, raw and Fibroline-treated, dried and Fibroline-treated) are evaluated. Interface properties of treated hemp fibers on polypropylene matrix are then characterized by fragmentation test of monofilament composites. Results showed the Fibroline treatment reduces the fiber mechanical properties but improves the load transfer efficiency due to random generation of surface cracks and better fiber/matrix adherence, respectively. For the case of dried and Fibroline-treated hemp fibers, large decrease in mechanical and interfacial properties was observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Dinesh Kumar ◽  
L. Ponraj Sankar ◽  
T. Sathish ◽  
V. Vijayan ◽  
A. Parthiban ◽  
...  

Natural fiber composite is the most preferable research area in the modern situation due to its availability, applications, and ecofriendly quality. This paper deals with the influence of hemp fiber with the various compositions of the ramie fiber and some basic mechanical properties of banana fiber composites. The hemp fiber is maintained as 20 percentage of total volume. Then, the remaining volume percentage is shared with the ramie fiber and banana fiber with various combinations. Eleven specimens were prepared to identify the some basic mechanical properties. The chemical compositions were mentioned as a pie chart, and then experimental results were plotted as graphical representations like line diagram and radar diagram for clear identification that the composite with higher ramie fiber concentration provided the greater results in the mechanical behaviors. The suitable composite combinations were recommended based on their superior properties as conclusions.


Author(s):  
I. Baltiņa ◽  
Z. Zamuška ◽  
V. Stramkale ◽  
G. Strazds

Each year more and more people focus on healthy, ecological and environmental-friendly living. Environmentally friendly lifestyle doesn’t mean that we are using only natural products, but attention is pointed to the manufacturing and production process also. The rapid development of recycled and biodegradable products causes expanding usage of hemp fibers both in household and technical textiles. The analysis of hemp cultivation and usage trends in the world and Europe shows that hemp cultivation and processing in Latvia has good perspectives. Product quality is influenced by raw materials. In this case it is hemp fiber descriptive characteristics. Hemp fibers are natural fibers and their properties varies according to plant growing regional climatic conditions, amount of manure, plant density, harvesting time and pre-treatment technological processes. There are studied the influence of above mentioned factors on chemical composition, geometrical and physical properties of the Latvian hemp fiber both local and foreign cultivars. The work was carried out in cooperation between Riga Technical University, Textile Technology and Design Institute and the Agriculture Science Centre of Latgale.


2007 ◽  
Vol 1 (1) ◽  
pp. 109-117 ◽  
Author(s):  
K. L. Pickering ◽  
Y. Li ◽  
R. L. Farrell ◽  
M. Lay

Increasing worldwide environmental awareness is encouraging scientific research into developing cheaper, more sustainable materials. Industrial hemp fiber is one of the strongest and stiffest available natural fibers [K. L. Pickering, M. Priest, T. Watts, G. Beckermann, and S. N. Alam, J. Adv. Mater. 37, 15 (2005)] and therefore has great potential in composite materials. Incorporated into a thermoplastic matrix, it gives a structural material that is cheap, lightweight, and recyclable. However, natural fibers are commonly incompatible with common molding thermoplastics such as polypropylene, which limits the performance of the composites produced. The main objective of the current work was to investigate the use of fungi to treat hemp fiber to create better bonding characteristics in natural fiber reinforced polypropylene composites. X-ray diffraction (XRD), ζ-potential, lignin testing, thermal analysis, and scanning electron microscopy (SEM) were used to characterize the effect of treatment on hemp fibers. A combined alkali and fungi treated fiber composite produced the highest tensile strength of 48.3 MPa, an increase of 32% compared to composites with untreated fiber.


2021 ◽  
pp. 004051752110277
Author(s):  
Qilu Cui ◽  
Jiawei Li ◽  
Chongwen Yu

In this paper, the extraction process of flavonoids from hemp fibers was studied. Response surface methodology (RSM) analysis of the extraction parameters indicated that optimized results would be ethanol concentration 76 vol.%, bath ratio 1:50, and reaction time 139 min; therefore, an optimal extraction rate of flavonoids of 0.2275% can be obtained. The chemical structure, surface morphology and element composition of flavonoid extracts were analyzed. The test results indicated that hemp extract contains flavonoids, which can be used to extract flavonoids from hemp fiber, so as to comprehensively develop hemp fiber and reduce the discharge of waste liquid in the traditional degumming process.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4116
Author(s):  
Krzysztof Siodla ◽  
Aleksandra Rakowska ◽  
Slawomir Noske

A medium voltage (MV) cable network is a substantial component of the distribution network. Present management of this grid segment is mainly based on the failure rate analysis, i.e., a rise in the number and kind of faults on the actual line means that its technical condition is getting worse. The efficiency of the power system is low and additional costs of repair works, supply interruption, difficulties in the investment planning and operation and maintenance works are necessary. The aim of the R&D works done in the realised project is to implement the management of the MV cable network based on the estimated condition of the individual cable line, obtained from diagnostic measurements. The diagnostic investigations of the cable lines are the reference. Many years of research work have led to the development of the Health Index based on diagnostic, technical and service data.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 511 ◽  
Author(s):  
Eyerusalem A. Taye ◽  
Judith A. Roether ◽  
Dirk W. Schubert ◽  
Daniel T. Redda ◽  
Aldo R. Boccaccini

Novel hemp fiber reinforced geopolymer composites were fabricated. The matrix was a new geopolymer based on a mixture of red mud and fly ash. Chopped, randomly oriented hemp fibers were used as reinforcement. The mechanical properties of the geopolymer composite, such as diametral tensile (DTS) (or Brazilian tensile) strength and compressive strength (CS), were measured. The geopolymer composites reinforced with 9 vol.% and 3 vol.% hemp fiber yielded average DTS values of 5.5 MPa and average CS values of 40 MPa. Scanning electron microscopy (SEM) studies were carried out to evaluate the microstructure and fracture surfaces of the composites. The results indicated that the addition of hemp fiber is a promising approach to improve the mechanical strength as well as to modify the failure mechanism of the geopolymer, which changed from brittle to “pseudo-ductile”.


Sign in / Sign up

Export Citation Format

Share Document