Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation

2022 ◽  
pp. 1-11
Author(s):  
Ying Wang ◽  
Shanshan Zhao ◽  
Guohua Li ◽  
Dawei Wang ◽  
Yanwu Jin

<b><i>Introduction:</i></b> This article purposed to detect the function of the HOTAIR and HOTAIR/microRNA-129-5p (miR-129-5p) axis on the isoflurane (ISO)-injured cells and rat, and propounded a novel perspective in exploring the molecular pathogenesis of ISO damage. <b><i>Methods:</i></b> The expression of HOTAIR and miR-129-5p was tested by quantitative real-time PCR. The viable cells were identified using MMT, and the apoptotic cells were provided by flow cytometry. The concentration of proinflammatory indicators was revealed by enzyme-linked immunosorbent assay kits. The function of HOTAIR on oxidative stress was detected by commercial kits. A luciferase assay was performed to confirm the relationship between miR-129-5p and HOTAIR. The Morris water maze test was conducted to elucidate the cognition of SD rats. <b><i>Results:</i></b> The expression of HOTAIR was enhanced and the expression of miR-129-5p was lessened in the ISO-evoked SD rats and HT22 cells. The interference of HOTAIR reversed the injury of ISO on cell viability, apoptosis, inflammation, and oxidative stress. Besides, HOTAIR might be a target ceRNA of miR-129-5p. MiR-129-5p abrogated the function of silenced HOTAIR on cell viability, cell apoptosis, inflammation, and oxidative stress. Moreover, in vivo, the intervention of HOTAIR reversed the influence of ISO on cognition and oxidative stress by binding miR-129-5p. <b><i>Discussion/Conclusion:</i></b> Lowly expressed HOTAIR contributed to the recovery of the ISO-injured HT22 cell model from the abnormal viability, apoptosis, inflammation, and oxidative stress by regulating miR-129-5p. miR-129-5p mediated the function of HOTAIR on cognition and oxidative balance in the ISO-managed SD rat model.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shu Ye ◽  
Biao Cai ◽  
Peng Zhou ◽  
Guoquan Wang ◽  
Huawu Gao ◽  
...  

Alzheimer’s disease (AD) is a complex neurodegenerative disease. It is a chronic, lethal disease in which brain function is severely impaired and neuronal damage is irreversible. Huang-Pu-Tong-Qiao (HPTQ), a formula from traditional Chinese medicine, has been used in the clinical treatment of AD for many years, with remarkable effects. However, the neuroprotective mechanisms of HPTQ in AD have not yet been investigated. In the present study, we used AD models in vivo and in vitro, to investigate both the neuroprotective effect of HPTQ water extracts (HPTQ-W) and the potential mechanisms of this action. For the in vivo study, after HPTQ intervention, the Morris water maze test was used to examine learning and memory in rats. Transmission electron microscopy and immunofluorescence methods were then used to investigate neuronal damage. For the in vitro experiments, rat primary hippocampal neurons were cultured and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Additionally, mRNA levels of CaM, CaMKK, CaMKIV, and tau were examined using qRT-PCR, and protein expression of CaM, CaMKK, p-CaMKIV, and p-tau were examined using western blot. In vivo, we revealed that HPTQ significantly improved learning and memory deficits and attenuated neuronal damage in the AD rat model. Furthermore, in vitro results showed that HPTQ significantly increased cell viability in the AD cell model. We also demonstrated that HPTQ significantly decreased the mRNA levels of CaM, CaMKK, CaMKIV, and tau and significantly decreased the protein expressions of CaM, CaMKK, p-CaMKIV, and p-tau. In conclusion, our results indicated that HPTQ improved cognition and ameliorated neuronal damage in AD models and implicated a reduction in tau phosphorylation caused by inhibition of the CaM-CaMKIV pathway as a possible mechanism.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Ningwei Zhu ◽  
Xiao Liang ◽  
Ming Zhang ◽  
Xiaolan Yin ◽  
Hui Yang ◽  
...  

Abstract Objective The purpose of this study was to evaluate the effect of astaxanthin (AST) on cognition function, inflammatory response and oxidative stress in vascular dementia (VD) mice. Method VD mice model was established by left unilateral common carotid arteries occlusion (LUCCAO). Following LUCCAO, AST was intragastrically administered for 30 days. Object recognition test and morris water maze test were used to evaluate cognitive function. Hematoxylin and eosin staining was performed to observe the hippocampal neuron structure. Enzyme-linked immunosorbent assay kit and bicinchoninic acid kit were respectively adopted to measure IL-1β and IL-4 protein expression and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in hippocampus and prefrontal cortex. Results AST improved the discrimination ability of VD mice. The escape latency and path length of VD mice treated with AST were dramatically reduced. Besides, AST 200 mg/kg enhanced crossing platform time and the number of times crossing the platform quadrant, and alleviated the morphological impairment in VD mice. Moreover, we found that AST inhibited IL-1β expression and MDA content, whereas promoted IL-4 expression and SOD activity in a dose-dependent manner. Conclusion AST could improve cognitive impairment and hippocampal neurons in VD mice, which may be related to suppression of inflammatory response and oxidative stress.


2019 ◽  
Vol 47 (7) ◽  
pp. 741-749 ◽  
Author(s):  
Yuko Arita ◽  
Hyeon Jeong Park ◽  
Aisling Cantillon ◽  
Darios Getahun ◽  
Ramkumar Menon ◽  
...  

Abstract Background Bisphenol-A (BPA) is a widespread pollutant whose effects on pregnant women are poorly understood. Therefore, we investigated the effects of BPA on basal and bacteria-stimulated production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6], anti-inflammatory mediators [soluble glycoprotein 130 (sgp) 130, heme oxidase-1 (HO-1) and IL-10] and biomarkers for neurodevelopment [brain-derived neurotrophic factor (BDNF)], and oxidative stress [8-isoprostane (8-IsoP)] by the placenta. Methods Placental explant cultures were treated with BPA (0–10,000 nM) in the presence or absence of 107 colony-forming unit (CFU)/mL heat-killed Escherichia coli for 24 h. Biomarker concentrations in conditioned medium were quantified by the enzyme-linked immunosorbent assay (ELISA). Results Under basal conditions, IL-1β and IL-6 production was enhanced by BPA in a dose-dependent manner. Sgp130, a soluble receptor that reduces IL-6 bioactivity, was suppressed by BPA at 1000–10,000 nM. BPA also enhanced BDNF production at 1000 and 10,000 nM, and 8-IsoP expression at 10 and 100 nM. For bacteria-treated cultures, BPA increased IL-6 production at 100 nM and reduced sgp130 at 1000 nM but had no effect on IL-1β, TNF-α, BDNF, HO-1, 8-IsoP or IL-10 production. Conclusion BPA may increase placental inflammation by promoting IL-1β and IL-6 but inhibiting sgp130. It may also disrupt oxidative balance and neurodevelopment by increasing 8-IsoP and BDNF production.


2021 ◽  
Vol 15 ◽  
Author(s):  
ZhengHu Xu ◽  
Dongfeng Yang ◽  
Xiaojing Huang ◽  
Huai Huang

ObjectivesAstragaloside IV (AS-IV), the main active component of Astragalus membranaceus, bears anti-inflammatory, antioxidant, and neuroprotective activity. Parkinson’s disease (PD) is a common neurodegenerative disease. This study explored the protective effect of AS-IV on the cell model of PD.Materials and MethodsSH-SY5Y cells were incubated with different concentrations (10, 50, 100, 150, and 200 μM) of 6-hydroxydopamine (6-OHDA) for 0, 3, 6, 12, 24, and 48 h to establish the PD cell model. Different concentrations (0, 25, 50, 100, 150, and 200 μM) of AS-IV or 15 mM JAK2/STAT3 pathway inhibitor SC99 was added for intervention 2 h before 6-OHDA treatment. The viability and morphological damage of 6-OHDA-treated SH-SY5Y cells were measured using MTT assay and Hoechst 33258 staining. The expression of microtubule associated protein 2 (MAP2) was detected by immunofluorescence staining. The levels of inflammation and oxidative stress were measured using ELISA. Apoptosis of 6-OHDA-treated SH-SY5Y cells was detected using flow cytometry, and phosphorylation level of JAK2 and STAT3 were detected using Western blot analysis.ResultsThe survival rate of SH-SY5Y cells treated with 100 μM 6-OHDA for 24 h was about 50%. AS-IV (25–100 μM) significantly improved the viability (all p &lt; 0.01), increased MAP2 expression, and repaired the morphological damage induced by 6-OHDA. AS-IV inhibited IL-1β, IL-6, and TNF-α level (all p &lt; 0.05), reduced MDA and ROS content and increased SOD concentration, thereby reducing inflammation and oxidative stress (all p &lt; 0.01) in 6-OHDA-treated SH-SY5Y cells. Moreover, AS-IV decreased apoptosis rate and Bax/Bcl-2 ratio induced by 6-OHDA (all p &lt; 0.05). Mechanically, AS-IV significantly increased the phosphorylation of JAK2 and STAT3 (p &lt; 0.01); the addition of SC99 decreased the cell viability, increased the apoptosis rate, enhanced the levels of inflammatory factors and oxidative stress.ConclusionAS-IV enhanced the cell viability, and inhibited apoptosis, inflammation and oxidative stress of 6-OHDA-treated SH-SY5Y cells via activating the JAK2/STAT3 signaling pathway. This study may confer novel insights for the management of PD.


2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Cosmetics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 111
Author(s):  
Punniamoorthy Thiviya ◽  
Ashoka Gamage ◽  
Dinushika Piumali ◽  
Othmane Merah ◽  
Terrence Madhujith

The excess level of reactive oxygen species (ROS) disturbs the oxidative balance leading to oxidative stress, which, in turn, causes diabetes mellites, cancer, and cardiovascular diseases. These effects of ROS and oxidative stress can be balanced by dietary antioxidants. In recent years, there has been an increasing trend in the use of herbal products for personal and beauty care. The Apiaceae (previously Umbelliferae) family is a good source of antioxidants, predominantly phenolic compounds, therefore, widely used in the pharmaceutical, cosmetic, cosmeceutical, flavor, and perfumery industries. These natural antioxidants include polyphenolic acids, flavonoids, carotenoids, tocopherols, and ascorbic acids, and exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis, and anticancer. This review discusses the Apiaceae family plants as an important source of antioxidants their therapeutic value and the use in cosmetics.


2021 ◽  
Vol 21 ◽  
Author(s):  
Zhen Zhao ◽  
Yu Lu ◽  
Huan Wang ◽  
Xiang Gu ◽  
Luting Zhu ◽  
...  

Background: Some studies demonstrated that under high-glucose (HG) condition, osteoblasts develop oxidative stress, which will impair their normal functions. The effects of activin receptor-like kinase 7 (ALK7) silencing on HG-induced osteoblasts remained unclear. Objective: The aim of this study was to explore the effect of ALK7 on HG-induced osteoblasts. Methods: MC3T3-E1 cells were treated with different concentrations of HG (0, 50, 100, 200 and 300mg/dL), and the cell viability was detected using cell counting kit-8 (CCK-8). HG-treated MC3T3-E1 cells were transfected with siALK7 or ALK7 overexpression plasmid or siNrf2, and then the viability and apoptosis were detected by CCK-8 and flow cytometry. The levels of reactive oxygen species (ROS), collagen I and calcification nodule were determined by oxidative stress kits, Enzyme-linked immunosorbent assay and Alizarin red staining. The expressions of NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and osteoblast-associated genes were determined by quantitative real-time PCR (qRT-PCR) and Western blot. Results: Cell viability was reduced with HG treatment. Silencing ALK7 inhibited the effect of HG on increasing cell apoptosis and ROS production, reduced cell viability, mineralized nodules, and downregulated collagen I and osteoblast-associated genes expression in MC3T3-E1 cells. ALK7 silencing activated the Nrf2/HO-1 signaling pathway by affecting expressions of HO-1 and Nrf2. ALK7 overexpression had the opposite effects. In addition, siNrf2 partially reversed the effects of ALK7 silencing on HG-induced MC3T3-E1 cells. Conclusion: ALK7 silencing protected osteoblasts under HG condition possibly through activating the Nrf2/HO-1 pathway.


2020 ◽  
Vol 40 (6) ◽  
pp. 737-747
Author(s):  
Agnieszka Ścibior ◽  
Konrad A. Szychowski ◽  
Iwona Zwolak ◽  
Klaudia Dachowska ◽  
Jan Gmiński

Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 345
Author(s):  
Heba Al Housseiny ◽  
Madhu Singh ◽  
Shaneeka Emile ◽  
Marvin Nicoleau ◽  
Randy L. Vander Wal ◽  
...  

Air pollution has become the world’s single biggest environmental health risk of the past decade, causing millions of yearly deaths worldwide. One of the dominant air pollutants is fine particulate matter (PM2.5), which is a product of combustion. Exposure to PM2.5 has been associated with decreased lung function, impaired immunity, and exacerbations of lung disease. Accumulating evidence suggests that many of the adverse health effects of PM2.5 exposure are associated with lung inflammation and oxidative stress. While the physical structure and surface chemistry of PM2.5 are surrogate measures of particle oxidative potential, little is known about their contributions to negative health effects. In this study, we used functionalized carbon black particles as surrogates for atmospherically aged combustion-formed soot to assess the effects of PM2.5 surface chemistry in lung cells. We exposed the BEAS-2B lung epithelial cell line to different soot at a range of concentrations and assessed cell viability, inflammation, and oxidative stress. Our results indicate that exposure to soot with varying particle surface composition results in differential cell viability rates, the expression of pro-inflammatory and oxidative stress genes, and protein carbonylation. We conclude that particle surface chemistry, specifically oxygen content, in soot modulates lung cell inflammatory and oxidative stress responses.


Sign in / Sign up

Export Citation Format

Share Document