Down Regulation of the Munc18b-syntaxin-11 Complex and β1-tubulin Impairs Secretion and Spreading in Neonatal Platelets

2017 ◽  
Vol 117 (11) ◽  
pp. 2079-2091 ◽  
Author(s):  
Eva Caparrós-Pérez ◽  
Raúl Teruel-Montoya ◽  
Verónica Palma-Barquero ◽  
José Torregrosa ◽  
José Blanco ◽  
...  

AbstractNeonatal platelets are hyporeactive and show impaired agonist-induced secretion despite no obvious abnormalities in their granules. Here, we examined, for the first time, the ultrastructure of neonatal and adult platelets following agonist activation. Under resting conditions, neonatal and adult platelets appeared ultrastructurally identical. Following agonist stimulation, however, noticeable degranulation occurred in adult platelets, while granules in neonatal platelets remained clearly visible and apparently unable to centralize or fuse. To investigate the underlying mechanisms, we first examined the expression levels of the main SNARE proteins, which mediate the membrane fusion events required for exocytosis. Neonatal platelets showed significantly reduced levels of syntaxin-11 and its regulator, Munc18b. Since granule centralization depends on contraction of the microtubule ring, we also examined the expression of its main component, β1-tubulin. Noteworthy, we found decreased TUBB1 mRNA and protein levels in neonatal platelets, while TUBB2A and TUBB isoforms were overexpressed, partially compensating for that deficiency. Finally, supporting the functional consequences of defective exocytosis, adhesion kinetic assays, performed in plasma-free medium, demonstrated delayed adhesion and spreading of neonatal platelets. This is the first report showing marked reductions of syntaxin-11–Munc18b complex and β1-tubulin in neonatal platelets, indicating that these proteins, required for platelet degranulation, are developmentally regulated.

2021 ◽  
pp. 1-9
Author(s):  
Mosha Cheng ◽  
Qing Zhou

As a histone methyltransferase, enhancer of zeste homolog 2 (EZH2), suppresses osteoblast maturation and is involved in inflammation. However, the role of EZH2 in human periodontal ligament stem cells (PDLSCs) under inflammation still needs to be further investigated. This study aimed to identify the underlying mechanisms and explore the function of EZH2 in PDLSC osteogenesis under inflammation. PDLSCs were treated with sh-EZH2, DZNep or DKK1 under inflammation. The alkaline phosphatase (ALP) activity, alizarin red staining, and osteogenesis-related protein levels were analyzed. Lipopolysaccharide (LPS)-induced inflammation restrained osteogenic differentiation. Under inflammation, the upregulation of EZH2 suppressed the expression of osteogenic markers, including osteocalcin, runt-related transcription factor 2, and bone morphogenetic protein-2, the activity of ALP, and the accumulation of mineralization through the Wnt/β-catenin pathway. EZH2 knockdown inhibited the levels of proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α. These results suggested that LPS-induced overexpression of EZH2 suppressed PDLSC osteogenesis under inflammatory conditions through the Wnt/β-catenin pathway. These findings give new insights into the physiological differentiation and pathological inflammation of PDLSC osteogenesis, and provide an underlying therapeutic target for periodontitis.


2020 ◽  
Vol 15 (1) ◽  
pp. 274-283
Author(s):  
Bo Zheng ◽  
Tao Chen

AbstractAmong astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Luo ◽  
Yukun Zhang ◽  
Guangmei Qin ◽  
Bing Jiang ◽  
Lili Miao

Abstract Background MCM3AP-AS1 is a recently characterized lncRNA playing an oncogenic role in several cancers. However, its role in lung cancer remains unknown. Here, we aimed to explore the functions of MCM3AP-AS1 in small cell lung cancer (SCLC) and the possible underlying mechanisms. Methods MCM3AP-AS1 and ROCK1 levels in SCLC patients were analyzed by qPCR. RNA pull-down and luciferase assays were performed to analyze the interaction between MCM3AP-AS1 and miR-148a. ROCK1 mRNA and protein levels were detected by qPCR and Western blot, respectively. Cell invasion and migration were analyzed by Transwell assays. Results MCM3AP-AS1 was upregulated in patients with SCLC, and a high MCM3AP-AS1 level was accompanied by a low survival rate. The binding of MCM3AP-AS1 to miR-148a predicted by bioinformatics analysis was verified by RNA pull-down and luciferase assays. However, MCM3AP-AS1 and miR-148a did not affect each other’s expression. ROCK1 was upregulated in SCLC tissues and positively correlated with MCM3AP-AS1. In SCLC cells, MCM3AP-AS1 overexpression increased ROCK1 and promoted cancer cell invasion and migration, while miR-148a overexpression showed the opposite effects and attenuated the effects of MCM3AP-AS1 overexpression on ROCK1 expression and cell behaviors. Conclusions MCM3AP-AS1 sponges miR-148a, thereby increasing SCLC cell invasion and migration via upregulating ROCK1 expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Xu ◽  
Jiejun Shi ◽  
Xiaodong Cui ◽  
Ya Cui ◽  
Jingyi Jessica Li ◽  
...  

AbstractPromoter DNA methylation is a well-established mechanism of transcription repression, though its global correlation with gene expression is weak. This weak correlation can be attributed to the failure of current methylation quantification methods to consider the heterogeneity among sequenced bulk cells. Here, we introduce Cell Heterogeneity–Adjusted cLonal Methylation (CHALM) as a methylation quantification method. CHALM improves understanding of the functional consequences of DNA methylation, including its correlations with gene expression and H3K4me3. When applied to different methylation datasets, the CHALM method enables detection of differentially methylated genes that exhibit distinct biological functions supporting underlying mechanisms.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3314-3316 ◽  
Author(s):  
Jana Fritsche ◽  
Krishna Mondal ◽  
Achim Ehrnsperger ◽  
Reinhard Andreesen ◽  
Marina Kreutz

Abstract25-Hydroxyvitamin D3-1α-hydroxylase (25(OH)D3-1α-hydroxylase), the key enzyme of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) production, is expressed in monocyte-derived macrophages (MACs). Here we show for the first time constitutive expression of 25(OH)D3-1α-hydroxylase in monocyte-derived dendritic cells (DCs), which was increased after stimulation with lipopolysaccharide (LPS). Accordingly, DCs showed low constitutive production of 1,25(OH)2D3, but activation by LPS increased 1,25(OH)2D3 synthesis. In addition, 25(OH)D3-1α-hydroxylase expression was found in blood DCs but not in CD34+-derived DCs. Next we analyzed the functional consequences of these results. Addition of 1,25(OH)2D3 at concentrations comparable with those produced by DCs inhibited the allostimulatory potential of DCs during the early phase of DC differentiation. However, terminal differentiation decreased the responsiveness of DCs to 1,25(OH)2D3. In conclusion, DCs are able to produce 1,25(OH)2D3 especially following stimulation with LPS. Terminal maturation renders DCs unresponsive to the effects of 1,25(OH)2D3, but those cells are able to suppress the differentiation of their own precursor cells in a paracrine way through the production of 1,25(OH)2D3.


2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Author(s):  
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Changwon Kho ◽  
Ahyoung Lee ◽  
Dongtak Jeong ◽  
Jae Gyun Oh ◽  
Antoine Chaanine ◽  
...  

Background: The cardiac calcium ATPase, SERCA2a, is a critical pump responsible for Ca2+ re-uptake during excitation-contraction coupling. Impaired Ca2+ uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. However, the underlying mechanisms of SERCA2a’s dysfunction remain incompletely understood. Methods and Results: In this study, we show that SERCA2a is modified by SUMO1 at lysine sites 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. SUMO1 and SERCA2a SUMOylation levels were both decreased in mouse and pig models of heart failure and failing human left ventricles. To determine whether reduced SUMO1 levels are responsible for reduced SERCA2a protein levels and reduced cardiac function, we used an adenovirus associated virus-mediated gene delivery approach to up-regulate SUMO1 in trans aortic constriction-induced mouse model of heart failure. We found that increasing SUMO1 levels led to a restoration of SERCA2a levels, improved hemodynamic performance, and reduced mouse mortality. By contrast, down-regulation of SUMO1 using small hairpin RNA accelerated cardiac functional deterioration and was accompanied by decreased SERCA2a function. Conclusion: In this study, we study a new mechanism for modulation of SERCA2a activity and beneficial effects of SUMO1 in the setting of heart failure. It suggests that changes in post-translational modifications of SERCA2a could negatively affect cardiac function in heart failure. Our data may provide a new platform for the design of therapeutic strategies for heart failure.


Blood ◽  
2019 ◽  
Vol 133 (8) ◽  
pp. 830-839 ◽  
Author(s):  
Viola Close ◽  
William Close ◽  
Sabrina Julia Kugler ◽  
Michaela Reichenzeller ◽  
Deyan Yordanov Yosifov ◽  
...  

Abstract NOTCH1 is mutated in 10% of chronic lymphocytic leukemia (CLL) patients and is associated with poor outcome. However, NOTCH1 activation is identified in approximately one-half of CLL cases even in the absence of NOTCH1 mutations. Hence, there appear to be additional factors responsible for the impairment of NOTCH1 degradation. E3-ubiquitin ligase F-box and WD40 repeat domain containing-7 (FBXW7), a negative regulator of NOTCH1, is mutated in 2% to 6% of CLL patients. The functional consequences of these mutations in CLL are unknown. We found heterozygous FBXW7 mutations in 36 of 905 (4%) untreated CLL patients. The majority were missense mutations (78%) that mostly affected the WD40 substrate binding domain; 10% of mutations occurred in the first exon of the α-isoform. To identify target proteins of FBXW7 in CLL, we truncated the WD40 domain in CLL cell line HG-3 via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9). Homozygous truncation of FBXW7 resulted in an increase of activated NOTCH1 intracellular domain (NICD) and c-MYC protein levels as well as elevated hypoxia-inducible factor 1-α activity. In silico modeling predicted that novel mutations G423V and W425C in the FBXW7-WD40 domain change the binding of protein substrates. This differential binding was confirmed via coimmunoprecipitation of overexpressed FBXW7 and NOTCH1. In primary CLL cells harboring FBXW7 mutations, activated NICD levels were increased and remained stable upon translation inhibition. FBXW7 mutations coincided with an increase in NOTCH1 target gene expression and explain a proportion of patients characterized by dysregulated NOTCH1 signaling.


2001 ◽  
Vol 281 (4) ◽  
pp. G890-G898 ◽  
Author(s):  
Suzana D. Savkovic ◽  
Akila Ramaswamy ◽  
Athanasia Koutsouris ◽  
Gail Hecht

Enteropathogenic Escherichia coli (EPEC) alters many functions of the host intestinal epithelia. Inflammation is initiated by activation of nuclear factor (NF)-κB, and paracellular permeability is enhanced via a Ca2+- and myosin light-chain kinase (MLCK)-dependent pathway. The aims of this study were to identify signaling pathways by which EPEC triggers inflammation and to determine whether these pathways parallel or diverge from those that alter permeability. EPEC-induced phosphorylation and degradation of the primary inhibitor of NF-κB (IκBα) were tumor necrosis factor (TNF)-α and interleukin (IL)-1β independent. In contrast to Salmonella typhimurium, EPEC-stimulated IκBα degradation and IL-8 expression did not require Ca2+. Instead, extracellular signal-regulated kinase (ERK)-1/2 was significantly and rapidly activated. ERK1/2 inhibitors attenuated IκBα degradation and IL-8 expression. Although ERK1/2 can activate MLCK, its inhibition had no impact on EPEC disruption of the tight junction barrier. In conclusion, EPEC-induced inflammation 1) is TNF-α and IL-1β receptor independent, 2) utilizes pathways differently from S. typhimurium, 3) requires ERK1/2, and 4) employs signals that are distinct from those that alter permeability. This is the first time that EPEC-activated signaling cascades have been linked to independent functional consequences.


1998 ◽  
Vol 84 (2) ◽  
pp. 593-598 ◽  
Author(s):  
Michael K. Connor ◽  
David A. Hood

Connor, Michael K., and David A. Hood. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J. Appl. Physiol. 84(2): 593–598, 1998.—The purpose of this study was to examine the expression of nuclear and mitochondrial genes in cardiac and skeletal muscle (triceps brachii) in response to short-duration microgravity exposure. Six adult male rats were exposed to microgravity for 6 days and were compared with six ground-based control animals. We observed a significant 32% increase in heart malate dehydrogenase (MDH) enzyme activity, which was accompanied by a 62% elevation in heart MDH mRNA levels after microgravity exposure. Despite modest elevations in the mRNAs encoding subunits III, IV, and VIc as well as a 2.2-fold higher subunit IV protein content after exposure to microgravity, heart cytochrome c oxidase (CytOx) enzyme activity remained unchanged. In skeletal muscle, MDH expression was unaffected by microgravity, but CytOx activity was significantly reduced 41% by microgravity, whereas subunit III, IV, and VIc mRNA levels and subunit IV protein levels were unaltered. Thus tissue-specific (i.e., heart vs. skeletal muscle) differences exist in the regulation of nuclear-encoded mitochondrial proteins in response to microgravity. In addition, the expression of nuclear-encoded proteins such as CytOx subunit IV and expression of MDH are differentially regulated within a tissue. Our data also illustrate that the heart undergoes previously unidentified mitochondrial adaptations in response to short-term microgravity conditions more dramatic than those evident in skeletal muscle. Further studies evaluating the functional consequences of these adaptations in the heart, as well as those designed to measure protein turnover, are warranted in response to microgravity.


Sign in / Sign up

Export Citation Format

Share Document