Degradation Behaviors of Biodegradable Aliphatic Polyesters and Polycarbonates

2020 ◽  
Vol 14 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Yonghang Xu ◽  
Fangya Zhou ◽  
Danmin Zhou ◽  
Jintang Mo ◽  
Huawen Hu ◽  
...  

Aliphatic polyesters and polycarbonates such as polylactide (PLA), polycaprolactone (PCL) and poly(propylene carbonate) (PPC), are well known as biodegradable, biocompatible and environmental-friendly polymeric materials, which have been widely used in various areas ranging from packaging to biomedical materials. The production and usage of biodegradable plastics can greatly alleviate the safety and environmental concerns because of the fairly short degradation periods and low toxicity of catabolite. During the degradation process of polymers, obvious changes appear in polymer structures and the physiochemical properties. Therefore, it is necessary to regulate and control the degradation behaviors and periods of biodegradable plastics such as polyesters and polycarbonates, which is significant for their more widespread popularization and applications. In this context, it is highly desirable to make a review contribution in this field so as to better understand the recent research progress on polymer degradation behaviors and kinetics, as well as the future prospect of biodegradable polymers. Herein, this paper reviews the research progress on the degradation behaviors of biodegradable polyesters and polycarbonates materials including PLA, PCL and PPC. Through an in-depth study of various internal/external factors, the degradation mechanism of these polymers is unraveled, which will motivate future studies into the synthesis of novel biodegradable polymers and the understanding of their degradation behavior on the molecular level.

2020 ◽  
Vol 67 (2) ◽  
pp. 115-120
Author(s):  
Raisa A. Alekhina ◽  
Victoriya E. Slavkina ◽  
Yuliya A. Lopatina

The article presents options for recycling polymers. The use of biodegradable materials is promising. This is a special class of polymers that can decompose under aerobic or anaerobic conditions under the action of microorganisms or enzymes forming natural products such as carbon dioxide, nitrogen, water, biomass, and inorganic salts. (Research purpose) The research purpose is in reviewing biodegradable materials that can be used for the manufacture of products used in agriculture. (Materials and methods) The study are based on open information sources containing information about biodegradable materials. Research methods are collecting, studying and comparative analysis of information. (Results and discussion) The article presents the advantages and disadvantages of biodegradable materials, mechanical properties of the main groups of biodegradable polymers. The article provides a summary list of agricultural products that can be made from biodegradable polymer materials. It was found that products from the general group are widely used in agriculture. Authors have found that products from a special group can only be made from biodegradable polymers with a controlled decomposition period in the soil, their use contributes to increasing the productivity of crops. (Conclusions) It was found that biodegradable polymer materials, along with environmental safety, have mechanical properties that allow them producing products that do not carry significant loads during operation. We have shown that the creation of responsible products (machine parts) from biodegradable polymers requires an increase in their strength properties, which is achievable by creating composites based on them. It was found that the technological complexity of their manufacture and high cost are the limiting factors for the widespread use of biodegradable polymers at this stage.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 999 ◽  
Author(s):  
Aranza Denisse Vital-Grappin ◽  
Maria Camila Ariza-Tarazona ◽  
Valeria Montserrat Luna-Hernández ◽  
Juan Francisco Villarreal-Chiu ◽  
Juan Manuel Hernández-López ◽  
...  

Microplastics (MPs) are distributed in a wide range of aquatic and terrestrial ecosystems throughout the planet. They are known to adsorb hazardous substances and can transfer them across the trophic web. To eliminate MPs pollution in an environmentally friendly process, we propose using a photocatalytic process that can easily be implemented in wastewater treatment plants (WWTPs). As photocatalysis involves the formation of reactive species such as holes (h+), electrons (e−), hydroxyl (OH●), and superoxide ion (O2●−) radicals, it is imperative to determine the role of those species in the degradation process to design an effective photocatalytic system. However, for MPs, this information is limited in the literature. Therefore, we present such reactive species’ role in the degradation of high-density polyethylene (HDPE) MPs using C,N-TiO2. Tert-butanol, isopropyl alcohol (IPA), Tiron, and Cu(NO3)2 were confirmed as adequate OH●, h+, O2●− and e− scavengers. These results revealed for the first time that the formation of free OH● through the pathways involving the photogenerated e− plays an essential role in the MPs’ degradation. Furthermore, the degradation behaviors observed when h+ and O2●− were removed from the reaction system suggest that these species can also perform the initiating step of degradation.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


2021 ◽  
Vol 13 (12) ◽  
pp. 6861
Author(s):  
Xiya Liang ◽  
Pengfei Li ◽  
Juanle Wang ◽  
Faith Ka Shun Chan ◽  
Chuluun Togtokh ◽  
...  

Mongolia is a globally crucial region that has been suffering from land desertification. However, current understanding on Mongolia’s desertification is limited, constraining the desertification control and sustainable development in Mongolia and even other parts of the world. This paper studied spatiotemporal patterns, driving factors, mitigation strategies, and research methods of desertification in Mongolia through an extensive review of literature. Results showed that: (i) remote sensing monitoring of desertification in Mongolia has been subject to a relatively low spatial resolution and considerable time delay, and thus high-resolution and timely data are needed to perform a more precise and timely study; (ii) the contribution of desertification impacting factors has not been quantitatively assessed, and a decoupling analysis is desirable to quantify the contribution of factors in different regions of Mongolia; (iii) existing desertification prevention measures should be strengthened in the future. In particular, the relationship between grassland changes and husbandry development needs to be considered during the development of desertification prevention measures; (iv) the multi-method study (particularly interdisciplinary approaches) and desertification model development should be enhanced to facilitate an in-depth desertification research in Mongolia. This study provides a useful reference for desertification research and control in Mongolia and other regions of the world.


Author(s):  
Marcelo Torres Piza Paes ◽  
Antonio Marcos Rego Motta ◽  
Lauro Lemos Lontra Filho ◽  
Juliano Ose´ias de Morais ◽  
Sine´sio Domingues Franco

Scratching abrasion due to rubbing against the sediment layer is an important degradation mechanism of flexible cable in deep water oil and natural gas exploitation. The present study was initiated to gain relevant data on the wear behaviour of some commercial materials used to externally protect these cables. So, Comparison tests were carried out using the single-point scratching technique, which consists of a sharp point mounted at the extremity of a pendulum. The energy dissipated during the scratching is used to evaluate the relative scratch resistance. The results showed, that the contact geometry strongly affects the specific scratching energy. Using SEM imaging, it was found, that these changes were related to the operating wear mechanisms. The observed wear mechanisms are also compared with those observed on some cables in deep water operations.


Author(s):  
Runmeng Qiao ◽  
Xin Wang ◽  
Guangjiong Qin ◽  
Jialei Liu ◽  
Aocheng Cao ◽  
...  

: The plastic film plays an important role in China's agricultural production. However, the large-scale use of plastic film has also produced a very serious problem of agricultural film pollution. Biodegradable polymers have attracted much attention because of the environmental pollution caused by traditional plastic mulching film. The most typical one is poly (butylene adipate co butylene terephthalate, PBAT). Poly (Butylene Adipate-co-Terephthalate) (PBAT) is a kind of aliphatic–aromatic polyesters with excellent biodegradability and mechanical processing properties. Therefore, it has been rapidly developed and widely used in the industry. However, there are clear requirements for the degradation period of agricultural film. At present, the degradable materials available on the market are difficult to meet the requirements of all crops for their degradation period. In this paper, the basic properties,degradation process and ways to delay the degradation of PBAT are reviewed to improve the degradation period of plastic film prepared by using this kind of material. Among them, the degradation process includes photodegradation, biodegradation and hydrolysis. The ways to delay the degradation include adding chain extender, light stabilizer, anti-hydrolysis agent and antibacterial agent. These can provide a theoretical basis for the research and development of biodegradable film with controllable degradation cycle. The future research and development of biodegradable polymers mainly focus on controllable degradation rate, stable degradation cycle, new materials and reducing research and development costs.


2016 ◽  
Author(s):  
Martin Kaminski ◽  
Hendrik Fuchs ◽  
Ismail-Hakki Acir ◽  
Birger Bohn ◽  
Theo Brauers ◽  
...  

Abstract. Beside isoprene, monoterpenes are the non-methane volatile organic compounds (VOC) with the highest global emission rates. Due to their high reactivity towards OH, monoterpenes can dominate the radical chemistry of the atmosphere in forested areas. In the present study the photochemical degradation mechanism of β-pinene was investigated in the Jülich atmosphere simulation chamber SAPHIR. The focus of this study is on the OH budget in the degradation process. Therefore the SAPHIR chamber was equipped with instrumentation to measure radicals (OH, HO2, RO2), the total OH reactivity, important OH precursors (O3, HONO, HCHO), the parent VOC beta-pinene, its main oxidation products, acetone and nopinone, and photolysis frequencies. All experiments were carried out under low NOx conditions (≤ 2 ppb) and at atmospheric beta-pinene concentrations (≤ 5 ppb) with and without addition of ozone. For the investigation of the OH budget, the OH production and destruction rates were calculated from measured quantities. Within the limits of accuracy of the instruments, the OH budget was balanced in all β-pinene oxidation experiments. However, even though the OH budget was closed, simulation results from the Master Chemical Mechanism 3.2 showed that the OH production and destruction rates were underestimated by the model. The measured OH and HO2 concentrations were underestimated by up to a factor of two whereas the total OH reactivity was slightly overestimated because of the poor reproduction of the measured nopinone by the model by up to a factor of three. A new, theory-derived first-generation product distribution by Vereecken and Peeters was able to reproduce the measured nopinone time series and the total OH reactivity. Nevertheless the measured OH and HO2 concentrations remained underestimated by the numerical simulations. These observations together with the fact that the measured OH budget was closed suggest the existence of unaccounted sources of HO2.


2018 ◽  
Vol 29 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Patrick O’Byrne

Critical theory is a paradigm that promotes viewpoints that are alternative and, at times, contrary to mainstream beliefs and dictates. In 2012, I adopted this perspective to review the role of ethnography and surmised that the data which arise from this research approach, which I described as an in-depth study of cultures, can be used to discipline and control these groups. In this edition of Qualitative Health Research, another author has critiqued this position. In this article, I review this critique, reiterate my position, update the data I used for my 2012 article, and highlight how I navigate what I feel is a tension between critical theory and practice.


Sign in / Sign up

Export Citation Format

Share Document