The Janus Faces of Nanoparticles

2007 ◽  
Vol 7 (12) ◽  
pp. 4607-4611 ◽  
Author(s):  
Ken Donaldson ◽  
Anthony Seaton

There is an paradox apparent in the fact that nanoparticles have potential use in nanomedicine for imaging and therapy, whereas combustion-derived NP are thought to be responsible for adverse health effects of air pollution. The nanotechnology industry is in the process of producing a number of new nanoparticles which are as-yet unquantified with regard to both hazard and potential for human exposure. The toxicology of combustion-derived nanoparticles is developing and there is now considerable understanding of how they might drive both adverse lung and cardiovascular effects, including the importance of small size, large relative surface area and oxidative stress. Medicinal nanoparticles are being developed and tested on a case-by-case basis using testing protocols from biomaterials and drug safety and with regard to risk-benefit. There are considerable differences in physical and chemical properties and biodegradability between medicinal nanoparticles and the industrial and combustion-derived nanoparticles studied by particle toxicologists and we would anticipate that the bulk of medicinal NP types will be of low toxicity. However, to resolve the nanoparticle paradox there is a need to advance understanding of the characteristics that control acute and chronic toxicity, translocation, biodegradation and elimination of all of the types of particles likely to gain access to the human body. Much would be gained in this area by collaboration between particle toxicologists and nanopharmacologists.

Author(s):  
Guili Ge ◽  
Lin Li ◽  
Dan Wang ◽  
Mingjian Chen ◽  
Zhaoyang Zeng ◽  
...  

Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, easy surface functionalization, making them widely used in biological...


1994 ◽  
Vol 24 (10) ◽  
pp. 2078-2084 ◽  
Author(s):  
Kwei-Nam Law ◽  
Jacques L. Valade

Although jack pine (Pinusbanksiana Lamb.), which represents 20% of the total softwood volume, is one of the most abundant commercial softwood species in Canada, its rate of utilization in pulping is surprisingly low. This paper reviews the literature concerning the physical and chemical properties as well as the pulping characteristics of this species by mechanical, thermomechanical, chemithermomechanical, chemimechanical, and chemical processes to better understand its potential use in papermaking. The objective is to identify the problems related to the use of jack pine so that solutions might be sought to promote its usage. Some recommendations are put forth concerning future research.


2020 ◽  
Vol 1 (1) ◽  
pp. 18
Author(s):  
Safinta Nurindra Rahmadhia ◽  
Titisari Juwitningtyas

Banana leaf is mostly used as food packaging materials. The most often used leaf of banana trees is from Klutuk banana. Its leaf is the broadest and most durable among other banana leaf cultivars. However, the research of potential use of Klutuk banana leaf has not much done. In this research, the physical and chemical properties of Klutuk banana leaves will be observed from the very top to the bottom of the tree. Physical properties explored from Klutuk banana leaves are tensile strength, elongation, thickness, and color of the leaf. The leaf then will be extracted using methanol so that its antioxidant properties can be known. The leaf from the third petiole of Klutuk banana susu and wulung cultivars, has the best physical properties, i.e., mechanical, color, and antioxidant activity properties, and is best to use as food packaging material. The most significant activity of antioxidant is found from the first shoot of Klutuk banana susu and wulung leaf cultivars.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yan Gu ◽  
Matthew Hummel ◽  
Kasiviswanathan Muthukumarappan ◽  
Zhendong Zhao ◽  
Zhengrong Gu

AbstractTerpenes and their derivatives are sustainable, renewable chemicals that can be used as a complementary hydrocarbon. The exceptions are fossil-based feedstocks and lignin-based feedstocks. A simple method has been found to prepare allyl terpene maleate monomer by substitution reaction at lower reaction temperatures. Using terpenes from turpentine, maleic anhydride and allyl chloride as reactants, the synthesized monomer, terpene-diallyl maleate adduct, was prepared by D-A addition, hydrolysis, and substitution reaction. The resultant monomer was characterized for the first time. The synthesized product will be a versatile monomer and a very important intermediate, having broad application prospects. The synthesized monomer will replace similar aromatic compounds in certain applications because of its low-toxicity and sustainability. The synthesized monomer with two terminal olefin structures has great free radical polymerization potential, according to its physical and chemical properties and exploratory experimentation.


2021 ◽  
Author(s):  
Cochiran Pereira dos Santos ◽  
Adriana de Jesus Santos

Four clay samples from different deposits in the state of Sergipe, Brazil, were fractionated by dispersion and centrifugation for comparative tests with a standard commercial clay used for cosmetic and pharmaceutical purposes. For this, they were characterized by X-ray diffraction, X-ray fluorescence spectroscopy, measurements of cation exchange capacity, oil absorption and viscosity, in addition to particle sizes and plasticity indexes. The objective was to determine the physical and chemical properties of raw clays and the consequent granulometric fractions to evaluate their potential use in products with high added value. After fractionation, the samples showed significant amounts of smectite and kaolinite, which combined with the size, particle distribution, chemical composition, and high adsorption capacity, especially in the PDL and PV samples, make them potentially interesting for applications in pharmaceutical and cosmetic products, they can also be used in spas and esthetic centers for therapeutic purposes based on their softness and cation exchange capacity.


2020 ◽  
Vol 19 (2) ◽  
pp. 82-89
Author(s):  
O. V. Bakina ◽  
N. V. Svarovskaya ◽  
A. A. Miller ◽  
A. S. Lozhkomoev ◽  
A. V. Avgustinovich ◽  
...  

Introduction. There are high-thech methods of nanoparticle production with controlled morphology and physical and chemical properties. Alumina-based mesoporous nanostructures have low toxicity and biocompatibility. FDI recommends alumina for biomedical application. Alumina inhibits the grow of cancer due to positive zeta-potential and low solubility in water. We observed the synergistic effect of joint application of doxorubicin and nanostructures. This approach reduces drug concentration and its toxicity.Purpose: to synthesize nanostructures with different surface potentials and to study toxicity of these nanostructures alone and in combination with doxorubicin.Material and Methods. The alumina-based nanostructures were obtained by the hydrolysis of nanopowder. The morphology of nanostructures was investigated by transmission electron microscopy with an integrated system of energy dispersive analysis. The phase composition of the particles was determined by x-ray diffraction. The effect of the synthesized nanostructures on the viability of cell lines was determined using the MTT test.Results. The synthesized nanostructures have a low toxicity and can be used as an adjuvant for doxorubicin.Conclusion. The combined use of doxorubicin and bicomponent nanostructures leads to an increase in the damaging effect of doxorubicin on Neuro-2a cells.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Alicia Rosales ◽  
Karen Esquivel

Titanium dioxide is well known for its photocatalytic properties and low toxicity, meanwhile, silicone dioxide exhibits hydrophobic and hydrophilic properties and thermal stability. The union of these two materials offers a composite material with a wide range of applications that relate directly to the combined properties. The SiO2-TiO2 composite has been synthesized through physical methods and chemical methods and, with adequate conditions, morphology, crystallinity, boundaries between SiO2-TiO2, among other properties, can be controlled. Thus, the applications of this composite are wide for surface applications, being primarily used as powder or coating. However, the available research information on this kind of composite material is still novel, therefore research in this field is still needed in order to clarify all the physical and chemical properties of the material. This review aims to encompass the available methods of synthesis of SiO2-TiO2 composite with modifiers or dopants, the application and known chemical and physical properties in surfaces such as glass, mortar and textile, including aspects for the development of this material.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3252
Author(s):  
Lianjie Ye ◽  
Larwubah Kollie ◽  
Xing Liu ◽  
Wei Guo ◽  
Xiangxian Ying ◽  
...  

The development of novel nanoparticles as a new generation therapeutic drug platform is an active field of chemistry and cancer research. In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity, which makes them have broad application prospects in the field of cancer therapy. Therefore, understanding the anti-tumor mechanism of fullerene nanoparticles is of great significance for the design and development of anti-tumor drugs with low toxicity and high targeting. This review has focused on various anti-tumor mechanisms of fullerene derivatives and discusses their toxicity and their distribution in organisms. Finally, the review points out some urgent problems that need solution before fullerene derivatives as a new generation of anti-tumor nano-drug platform enter clinical research.


2013 ◽  
Vol 1 (3) ◽  
pp. 143-156 ◽  

<p>Chlorination of drinking water leads to the formation of a variety of Disinfection By-Products (DBPs) that may have adverse health effects on humans. Research on this subject has been continued and new epidemiological and toxicological studies have been conducted. This review summarizes factors affecting DBP formation and predictive equations proposed for it, physical and chemical properties, environmental fate, actual measurements of these compounds and technologies for controlling them, as well as regulation and currently proposed changes of their Maximum Contaminant Levels (MCLs) after evaluation by EPA of new data available.</p>


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document