Interface Trap Charge Effects of Monolithic 3D Junctionless Field-Effect Transistors (JLFET) Inverter

2021 ◽  
Vol 21 (8) ◽  
pp. 4252-4257
Author(s):  
Tae Jun Ahn ◽  
Yun Seop Yu

We investigated the effect of the interface trap charge in a monolithic three-dimensional inverter structure composing of JLFETs (M3DINV-JLFET), using the interface trap charge distribution extracted in the previous study. The effect of interface trap charge was compared with a conventional M3DINV composing of MOSFETs (M3DINV-MOSFETs) by technology computer-aided design simulation. When the interface trap charges in both M3DINV-JLFET and M3DINV-MOSFET are added, the threshold voltages, on-current levels, and subthreshold swings of both JLFETs and MOSFETs increase, decrease, and increase, respectively, and switching voltages and propagation delays of M3DINV are shifted and increased, respectively. However, since JLFET and MOSFET have different current paths of bulk and interface in channel, respectively, MOSFET is more affected by the interface trap, and M3DINV-JLFET has almost less effect of interface trap at different thickness of interlayer dielectric, compared to M3DINV-MOSFET.

Author(s):  
Fahimul Islam Sakib ◽  
Md. Azizul Hasan ◽  
Mainul Hossain

Abstract Negative capacitance (NC) effect in nanowire (NW) and nanosheet (NS) field effect transistors (FETs) provide the much-needed voltage scaling in future technology nodes. Here, we present a comparative analysis on the performance of NC-NWFETs and NC-NSFETs through fully calibrated, three-dimensional computer aided design (TCAD) simulations. In addition to single channel NC-NSFETs and NC-NWFETs, those, with vertically stacked NSs and NWs, have been examined for the same layout footprint (LF). Results show that NC-NSFETs can achieve lower subthreshold swing (SS) and higher ON-current (ION ) than NC-NWFET of comparable device dimensions. However, NC-NWFETs show slightly higher ION/IOFF ratio. Negative differential resistance (NDR) is found to be more pronounced in NC-NSFET, enabling these devices to attain a stronger drain-induced-barrier-rising (DIBR) and steeper SS for gate lengths as small as 10 nm. The results presented here can, therefore, provide useful insights for performance optimization of NC-NWFETs and NC-NSFETs, in ultra-scaled and high-density logic applications, for 7 nm and beyond technology nodes.


2020 ◽  
Vol 10 (24) ◽  
pp. 8880
Author(s):  
Min Woo Kang ◽  
Woo Young Choi

The hump behavior of gate-normal nanowire tunnel field-effect transistors (NWTFETs) is investigated by using a three-dimensional technology computer-aided design (TCAD) simulation. The simulation results show that the hump behavior degrades the subthreshold swing (SS) and on-current (Ion) because the corners and sides of nanowires (NWs) have different surface potentials. The hump behavior can be successfully suppressed by increasing the radius of curvature (R) of NWs and reducing gate insulator thickness (Tins).


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 863
Author(s):  
Yunjae Kim ◽  
Myounggon Kang

The effects of the single-event upset (SEU) generated by radiation on nanowire field-effect transistors (NW-FETs) and nanosheet (NS)-FETs were analyzed according to the incident angle and location of radiation, by using three-dimensional technology computer-aided design tools. The greatest SEU occurred when the particle was incident at 90°, whereas the least occurred at 15°. SEU was significantly affected when the particle was incident on the drain, as compared to when it was incident on the source. The NS-FETs were robust to SEU, unlike the NW-FETs. This phenomenon can be attributed to the difference in the area exposed to radiation, even if the channel widths of these devices were identical.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 454
Author(s):  
You Wang ◽  
Yu Mao ◽  
Qizheng Ji ◽  
Ming Yang ◽  
Zhaonian Yang ◽  
...  

Gate-grounded tunnel field effect transistors (ggTFETs) are considered as basic electrostatic discharge (ESD) protection devices in TFET-integrated circuits. ESD test method of transmission line pulse is used to deeply analyze the current characteristics and working mechanism of Conventional TFET ESD impact. On this basis, a SiGe Source/Drain PNN (P+N+N+) tunnel field effect transistors (TFET) was proposed, which was simulated by Sentaurus technology computer aided design (TCAD) software. Simulation results showed that the trigger voltage of SiGe PNN TFET was 46.3% lower, and the failure current was 13.3% higher than Conventional TFET. After analyzing the simulation results, the parameters of the SiGe PNN TFET were optimized. The single current path of the SiGe PNN TFET was analyzed and explained in the case of gate grounding.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


Sign in / Sign up

Export Citation Format

Share Document