Observation of Cells on a Simulated Titanium Surface with Transparency

2021 ◽  
pp. 002203452110002
Author(s):  
K. Teraoka ◽  
A. Watazu ◽  
T. Sonoda

The main driving force of osseointegration on titanium implants is believed to be the calcification caused by cellular activity. However, owing to the opacity of bulk titanium, live cells on titanium surfaces cannot be observed using an inverted microscope. To overcome this limitation, this study proposes a transparent titanium thin layer as a simulated titanium surface that allows live-cell observation from below. The titanium layer was fabricated on a polystyrene culture dish by magnetron DC sputtering using a pure Ti(JIS1) target. The titanium layer was characterized by transparency, composition, structure, and wettability. Osteoblast-like cells were cultured in the titanium-coated dishes. The cell culture was observed periodically using an inverted microscope, and the images were compiled into time-lapse videos. Cells on the titanium layer were characterized by movement speeds and doubling times. The titanium-coated dish was transparent gray, and its transmittance profile was consistent with that of the polystyrene dish. The titanium layer showed similarities to bulk titanium surfaces in terms of composition and structure; that is, it showed an oxidized titanium outermost layer and titanium metal basal layer. The wettability of the titanium layer was hydrophilic with mean contact angles of 67.52°. Osteoblast-like cells successfully adhered to the titanium layer and proliferated to confluence. The time-lapse videos demonstrated active movement of the cells on the titanium layer, which suggested the involvement of the titanium surface in cellular motility. The cell culture on the titanium layer can be considered cell culture on a titanium surface. In short, the titanium layer enabled the acquisition of information for living cells on titanium that has either been unknown or analogically understood based on cell culture on polystyrene dishes.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 461
Author(s):  
Paula Navarro ◽  
Alberto Olmo ◽  
Mercè Giner ◽  
Marleny Rodríguez-Albelo ◽  
Ángel Rodríguez ◽  
...  

The chemical composition and surface topography of titanium implants are essential to improve implant osseointegration. The present work studies a non-invasive alternative of electrical impedance spectroscopy for the characterization of the macroporosity inherent to the manufacturing process and the effect of the surface treatment with femtosecond laser of titanium discs. Osteoblasts cell culture growths on the titanium surfaces of the laser-treated discs were also studied with this method. The measurements obtained showed that the femtosecond laser treatment of the samples and cell culture produced a significant increase (around 50%) in the absolute value of the electrical impedance module, which could be characterized in a wide range of frequencies (being more relevant at 500 MHz). Results have revealed the potential of this measurement technique, in terms of advantages, in comparison to tiresome and expensive techniques, allowing semi-quantitatively relating impedance measurements to porosity content, as well as detecting the effect of surface modification, generated by laser treatment and cell culture.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Tohru Hayakawa ◽  
Eiji Yoshida ◽  
Yoshitaka Yoshimura ◽  
Motohiro Uo ◽  
Masao Yoshinari

The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Jaewoo Shim ◽  
Hiromi Nakamura ◽  
Takahiro Ogawa ◽  
Vijay Gupta

A previously developed laser spallation technique to determine the tensile strength of thin film interfaces was successfully adopted to study the effect of microsurface roughness of titanium disks on the adhesion strength of mineralized bone tissue. The study demonstrated that mineralized tissue has about 25% higher interfacial strength when it is cultured on the acid-etched titanium surface than on its machined counterpart. Specifically, interfacial tensile strength of 179±4.4 MPa and 224±2.6 MPa were measured when the mineralized tissue was processed on the machined titanium and acid-etched titanium surfaces, respectively. Since in the laser spallation experiment, the mineralized tissue is pulled normal to the interface, this increase is attributed to the stronger interfacial bonding on account of higher surface energy associated with the acid-etched surface. This enhanced local chemical bonding further enhances the roughness-related mechanical interlocking effect. These two effects at very different length scales—atomic (enhanced bonding) versus continuum (roughness-related interlocking)—act synergistically and explain the widely observed clinical success of roughened dental implants.


2007 ◽  
Vol 561-565 ◽  
pp. 1529-1532
Author(s):  
Bo Feng ◽  
A. Liu ◽  
N. Wu ◽  
Jie Weng ◽  
Shu Xin Qu ◽  
...  

Bone-like hydroxyapatite (HA) coatings were fabricated on titanium implants by a self-assembled technique and biomimetic method. After titanium plates were oxidized in a mixture of H2SO4/H2O2, a hexadecanoic acid self-assembled onto titanium surfaces. Contact angles of water and tricresyl phosphate on the surfaces were measured to characterize the self-assembled monolayer (SAM) and confirm the presence of the functional group. The titanium plates with SAM were used to fabricate HA coatings. In the simulate body fluid (SBF) with and without bovine serum albumin (BSA), Ca2+ and PO4 3- ions could spontaneously deposit onto the titanium surfaces and form bone-like HA coatings. The morphology, component and structure of samples were examined by scanning electronic microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and attenuated total reflection Fourier transform infrared spectroscopy. The results suggested that the SAM can induce the formation of the nano-HA coating with a network and microporous structure. For the biomimetical HA coating induced by HDA-SAM, BSA could modulate the growth of HA crystal and decreased the grain size.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1445
Author(s):  
Taisa Nogueira Pansani ◽  
Thanh Huyen Phan ◽  
Qingyu Lei ◽  
Alexey Kondyurin ◽  
Bill Kalionis ◽  
...  

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengchuan Zhang ◽  
Ruogu Xu ◽  
Yang Yang ◽  
Chaoan Liang ◽  
Xiaolin Yu ◽  
...  

Abstract Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuyi Wu ◽  
Jianmeng Xu ◽  
Leiyan Zou ◽  
Shulu Luo ◽  
Run Yao ◽  
...  

AbstractPeri-implant infection is one of the biggest threats to the success of dental implant. Existing coatings on titanium surfaces exhibit rapid decrease in antibacterial efficacy, which is difficult to promisingly prevent peri-implant infection. Herein, we report an N-halamine polymeric coating on titanium surface that simultaneously has long-lasting renewable antibacterial efficacy with good stability and biocompatibility. Our coating is powerfully biocidal against both main pathogenic bacteria of peri-implant infection and complex bacteria from peri-implantitis patients. More importantly, its antibacterial efficacy can persist for a long term (e.g., 12~16 weeks) in vitro, in animal model, and even in human oral cavity, which generally covers the whole formation process of osseointegrated interface. Furthermore, after consumption, it can regain its antibacterial ability by facile rechlorination, highlighting a valuable concept of renewable antibacterial coating in dental implant. These findings indicate an appealing application prospect for prevention and treatment of peri-implant infection.


2014 ◽  
Vol 1648 ◽  
Author(s):  
Herbert P. Jennissen

ABSTRACTImaginary contact angles underlying hyperhydrophilicity and the Inverse Lotus Effect introduce a fundamental new development in the area of contact angles and wettability. Just as the Lotus Effect expanded hydrophobicity beyond the maximal contact angle of 119° on a smooth surface, the Inverse Lotus Effect expands hydrophilicity beyond the minimal contact angle of 0° on a smooth surface. Imaginary dynamic contact angles thus offer an exciting enhancement in tools and methodology for measuring the wettability on rough, highly hydrophilic surfaces. Contrary to current thinking, full or perfect wetting of rough surfaces is only little understood and cannot be predicted by classical equations. Therefore also the exact physical basis of imaginary dynamic contact angles remains to be elucidated. In this short treatise some aspects of the new field will be treated with examples derived from rough titanium surfaces employed in the medical field.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 99
Author(s):  
Milena Supernak-Marczewska ◽  
Andrzej Zielinski

The properties of chitosan coatings on titanium surfaces may be influenced by a variety of factors, including their chemical characteristics and the deposition method. The aim of this research was to determine the influence of a chitosan’s origin (a type of shrimp) and deacetylation degree (DD), when deposited on a very smooth titanium surface, on adhesion and biological behavior. The tests were performed using chitosan of a degree of 87% or 84% of deacetylation and that originated from armor crabs or shrimp armor. The technology of fabrication of chitosan coatings was by surface polishing to a smooth surface, oxidation in air, and immersion in a chitosan solution. The surface topographies were analyzed with an atomic force microscope and their water contact angles were measured by a falling drop method with a goniometer. The bioactivity tests were done in in vitro on osteogenic cells, type MC3T3-E1, with a biological microscope. The abrasion of the coatings was examined using a nano tribotester. The obtained results revealed that the adhesion of the coatings onto a smooth, oxidized titanium surface is appropriate as they remain sufficiently adjacent to the surface after wear tests. The source of chitin has a significant influence on biological properties, and the deacetylation degree is much less critical. The performed tests demonstrated the crucial role that the source of chitosan and the applicability of the applied surface treatment play in the preparation of chitosan coatings.


2006 ◽  
Vol 6 (9) ◽  
pp. 2682-2692 ◽  
Author(s):  
Chang Yao ◽  
Thomas J. Webster

Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.


Sign in / Sign up

Export Citation Format

Share Document