Effect of acrylonitrile–butadiene–styrene terpolymer on the foaming behavior of polypropylene

2019 ◽  
Vol 38 (3-4) ◽  
pp. 47-67 ◽  
Author(s):  
Xiao-Tian Tan ◽  
Ying-Guo Zhou ◽  
Jing-Jing Zhou ◽  
Bin-Bin Dong ◽  
Chun-Tai Liu ◽  
...  

To improve the cellular foam structure of common polypropylene (PP), acrylonitrile–butadiene–styrene terpolymer (ABS) and compatibilizer were used to blend with PP, and the foaming behavior of PP/ABS blends was investigated. The solid and foamed samples of the PP/ABS blend with different component were first fabricated by melt extrusion followed by conventional injection molding with or without a blowing agent. The mechanical properties, thermal features, and rheological characterizations of these samples were studied using the tensile test, dynamic mechanical analyzer, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and torque rheometry. The results suggest that ABS is a suitable candidate to improve the foamability of PP. The effect of ABS and compatibilizer on the foamability of PP can be attributed to three possible mechanisms, that is, the weak interaction between phases that facilitates cell nucleation, the improved gas-melt viscosity that prevents the escape of gas, and the influence of crystallization behavior that helps to form a fine foaming structure.

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1493 ◽  
Author(s):  
Wang ◽  
Li ◽  
Xie ◽  
Wu ◽  
Huang ◽  
...  

To improve the poor impact toughness of polypropylene (PP), organo-sepiolite (O-Sep) filled 80/20 (w/w) polypropylene/poly(acrylonitrile-butadiene-styrene) (PP/ABS) nanocomposites were fabricated. The contents of O-Sep were correlated with the morphological, mechanical, and rheological behavior of PP/ABS/O-Sep blends. Scanning electron microscopy (SEM) was applied to study the morphology and thermogravimetric analysis (TGA) was applied to study the thermal stability. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were applied to study the crystallinity. The obtained results show that O-Sep enhanced the dispersion of ABS in the PP matrix and increased the crystallinity of blends. The rheological results show that O-Sep could increase the viscosity, storage modulus, and loss modulus of blends. Moreover, the mechanical behavior shows that O-Sep (at proper content) simultaneously increased the tensile modulus, flexural modulus, and impact strength of PP/ABS/O-Sep blends.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 300 ◽  
Author(s):  
Bei Su ◽  
Ying-Guo Zhou ◽  
Bin-Bin Dong ◽  
Cao Yan

To improve the foaming behavior of a common linear polypropylene (PP) resin, polycarbonate (PC) was blended with PP, and three different grafted polymers were used as the compatibilizers. The solid and foamed samples of the PP/PC 3:1 blend with different compatibilizers were first fabricated by melt extrusion followed by injection molding (IM) with and without a blowing agent. The mechanical properties, thermal features, morphological structure, and relative rheological characterizations of these samples were studied using a tensile test, dynamic mechanical analyzer (DMA), scanning electron microscope (SEM), and torque rheometer. It can be found from the experimental results that the influence of the compatibility between the PP and PC phases on the foaming behavior of PP/PC blends is substantial. The results suggest that PC coupling with an appropriate compatibilizer is a potential method to improve the foamability of PP resin. The comprehensive effect of PC and a suitable compatibilizer on the foamability of PP can be attributed to two possible mechanisms, i.e., the partial compatibility between phases that facilitates cell nucleation and the improved gas-melt viscosity that helps to form a fine foaming structure.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7382
Author(s):  
Mahnoush Beygisangchin ◽  
Suraya Abdul Rashid ◽  
Suhaidi Shafie ◽  
Amir Reza Sadrolhosseini

The effects of different dopants on the synthesis, optical, electrical and thermal features of polyaniline were investigated. Polyaniline (PANI) doped with p-toluene sulfonic acid (PANI-PTSA), camphor sulphonic acid (PANI-CSA), acetic acid (PANI-acetic acid) and hydrochloric acid (PANI-HCl) was synthesized through the oxidative chemical polymerization of aniline under acidic conditions at ambient temperature. Fourier transform infrared light, X-ray diffraction, UV-visible spectroscopy, field emission scanning electron microscopy, photoluminescence spectroscopy and electrical analysis were used to define physical and structural features, bandgap values, electrical conductivity and type and degree of doping, respectively. Tauc calculation reveals the optical band gaps of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl at 3.1, 3.5, 3.6 and 3.9 eV, respectively. With the increase in dopant size, crystallinity is reduced, and interchain separations and d-spacing are strengthened. The estimated conductivity values of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl are 3.84 × 101, 2.92 × 101, 2.50 × 10−2, and 2.44 × 10−2 S·cm−1, respectively. Particularly, PANI-PTSA shows high PL intensity because of its orderly arranged benzenoid and quinoid units. Owing to its excellent synthesis, low bandgap, high photoluminescence intensity and high electrical features, PANI-PTSA is a suitable candidate to improve PANI properties and electron provider for fluorene-detecting sensors with a linear range of 0.001–10 μM and detection limit of 0.26 nM.


2017 ◽  
Vol 50 (6) ◽  
pp. 520-536 ◽  
Author(s):  
Olongal Manaf ◽  
Sheeja ◽  
Ameen Jowhar ◽  
Athiyanathil Sujith

In order to find out the shift of ductile nature of acrylonitrile-butadiene-styrene (ABS) polymer to brittle nature while maleic anhydride (MA) grafting, the iodine value of different MA-grafted ABS (MA-g-ABS) sampled has been determined. The iodine value of thermoplastic polymer is found by Wijs method with slight modification to overcome the poor solubility of thermoplastics in tetrachloromethane. Different samples with varying MA content were prepared using internal mixer. All the specimens were characterized by attenuated total reflectance IR spectroscopy and X-ray diffraction analysis. The iodine value measurements revealed that grafting and cross-linking evidently reduced the unsaturation in ABS polymer matrix. The grafting of MA causes the decrease in impact strength, flexural modulus, and a significant increase in crystallinity, tensile strength, yield point, and flexural strength, whereas thermal stability remains intact. Field emission scanning electron microscope images showed noticeable difference in broken surface texture between ABS and grafted samples.


2013 ◽  
Vol 32 (4) ◽  
pp. 339-343 ◽  
Author(s):  
Siyamak Bagheriyan

AbstractSb2S3 nanoparticles were synthesized via a simple sonochemical reaction between SbCl3 and thioacetamide. The effect of different parameters such as power and time of pulsation on the morphology of the product has been investigated. The Sb2 S3 nanostructures were then added to acrylonitrile-butadiene-styrene terpolymer. The effect of Sb2 S3 nanostructures on the thermal stability of the polymeric matrix has been examined. The thermal decomposition of the nanocomposite shifts towards higher temperature in the presence of the Sb2 S3 . Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), photoluminescence (PL) spectroscopy, thermogravimetric analysis (TGA), UL-94 and limiting oxygen index (LOI) analysis.


2013 ◽  
Vol 834-836 ◽  
pp. 276-280
Author(s):  
Xiao Juan Bai ◽  
Ling Wang

Calcium carbonate (CaCO3) is a filler widely used in plastics. In this study, the effects of CaCO3content and size on the thermal properties of acrylonitrile-butadiene-styrene (ABS)/CaCO3composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results in nitrogen showed that the maximum weight loss rate of the composites gradually decreased with increasing CaCO3content. TGA results in a mixed gas containing oxygen showed that CaCO3addition facilitated the degradation of ABS, and ABS degradation was completed at relatively low temperatures. The effect of nano-CaCO3on the thermal stability of the composites was similar to that of microsized CaCO3.


2016 ◽  
Vol 718 ◽  
pp. 3-9 ◽  
Author(s):  
Nguyen Thi Thuong ◽  
Nguyen Dang Mao ◽  
Bui Thi Phuong Quynh ◽  
Long Giang Bach

In this research, the effect of adding a virgin Styrene Butadiene rubber (SBR) on the morphology and properties of Acrylonitrile Butadiene Styrene (ABS) waste plastic has been investigated. The blends were prepared by melting method and characterized by means of mechanical testing, Scanning Electron Microscopy (SEM), Thermogravimatric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The obtained results indicated that virgin SBR phase dispersed efficiently, effectively in the ABS matrix and impact strength along with thermal resistance of the blends significantly improved. Thus, investigated results in this work will open promising approach for recycling ABS waste plastic.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Yan ◽  
Shuhao Qin ◽  
Jianbing Guo, ◽  
Min He ◽  
Minmin Zhang ◽  
...  

AbstractIn this article, polyamide 6(PA6)/organoclay masterbatch were prepared by melt mixing, and then acrylonitrile-butadiene-styrene(ABS)/polyamide 6(PA6)(70/30,w/w) nanocomposites were prepared by the melt mixing of PA6, ABS and organoclay. The effect of organoclay platelets on morphology and mechanical properties of ABS/PA6/organoclay ternary nanocomposites had been investigated by wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM), scanning electron microscopy (SEM) and mechanical properties testing. Morphology analysis revealed that organoclay platelets were selectively dispersed and exfoliated in PA6 phase, but some were located in interface of PA6 and ABS phase. The droplet size of PA6 dispersed phase were gradually reduced less than 4 phr organoclay, then the dispersed domain size became unchanged with the addition of various organoclay. It suggested the organoclay can compatibilize the ABS/PA6 blend nanocomposite. Moreover, the flexural strength and modulus increase with increasing organoclay content, but the tensile strength became maximal at 3 phr organoclay. The organoclay has no effect on impact strength of ABS/PA6 blend nanocomposite.


2019 ◽  
Vol 35 (2) ◽  
pp. 885-891
Author(s):  
Kalpana Balachandran ◽  
Nanthini Raveendiran ◽  
Margaret Marie John

This article uses 1, 4-dithiane-2, 5-diol as a monomer to synthesize aliphatic random copolyester (PDDD).PDDD was synthesized by direct melt polycondensation method and characterized by FT-IR and 1H- NMR. The physical properties of PDDD were characterized by X-ray diffraction, differential scanning calorimetry, as well as viscosity and solubility measurements. The anticancer, antioxidant, and antimicrobial activity of PDDD were evaluated to investigate its potential biomedical applications. Generally, good results were obtained. It is evident that the copolyester exhibits favorable and tunable physical, thermal and biological properties and so is a suitable candidate for biomedical applications.


2018 ◽  
Vol 34 (4) ◽  
pp. 394-417 ◽  
Author(s):  
Mehmet A Oral ◽  
Osman G Ersoy ◽  
Ersin İ Serhatli

A melt blending method was used to prepare acrylonitrile–butadiene–styrene terpolymer and polyethylene terephthalate blends to develop a new blend which can withstand higher temperatures required especially for automotive or home appliance paint curing processes. Blends were characterized by rheological, thermal and mechanical properties. Dimensional stability at 125°C was used to correlate with injection molded part shrinkage. The melt viscosity–composition curves for acrylonitrile–butadiene–styrene/polyethylene terephthalate blends exhibited a trend like the rule of mixtures in which adding acrylonitrile–butadiene–styrene to polyethylene terephthalate improved the processability. Scanning electron microscopy examination revealed different morphologies depending on the composition such as dispersed, co-continuous and phase inverted, which indicated that the binary blends were immiscible and form a two-phase structure. Tensile properties increased with an increase in the polyethylene terephthalate content while the unnotched impact strength reached a maximum at 40 wt.% acrylonitrile–butadiene–styrene content. In differential scanning calorimetry analysis, no partial miscibility was observed from the polyethylene terephthalate phase melting temperature shifts as compared to those of the neat component. Also, acrylonitrile–butadiene–styrene phases acted as nucleating agents due to change in polyethylene terephthalate cold crystallization temperature. In applied post shrinkage measurements by heat aging, we saw that the acrylonitrile–butadiene–styrene dimensional stability was improved with added polyethylene terephthalate.


Sign in / Sign up

Export Citation Format

Share Document