scholarly journals Osteogenesis of osteogenic matrix cell sheets preserved in culture medium in a rat model

2018 ◽  
Vol 27 (8) ◽  
pp. 1281-1288
Author(s):  
Tsutomu Kira ◽  
Manabu Akahane ◽  
Noriko Ouji-Sageshima ◽  
Takamasa Shimizu ◽  
Tadanobu Onishi ◽  
...  

Osteogenic matrix cell sheets (OMCSs) are ideal for bone regeneration. Transportation of OMCSs may be necessary, during which their osteogenic ability must be maintained. Here, we evaluated different media and temperatures for OMCS preservation. Bone marrow stromal/stem cells (BMSCs) were obtained from Fischer rats and analyzed for stem cell markers by flow cytometry. OMCSs were prepared from BMSCs by treatment with dexamethasone and ascorbic acid phosphate. After OMCS collection, they were stored in minimum essential medium (MEM) or Hank’s balanced salt solution (HBSS) at 37, 22, or 4°C for 24 hours. Cell viability and cytotoxic effects in the preservation conditions were determined by adenosine triphosphate (ATP) contents and lactate dehydrogenase (LDH) release, respectively. Osteogenesis was assessed by subcutaneously implanting preserved OMCSs around β-tricalcium phosphate ceramic disks into syngeneic rats. Implants were evaluated by alkaline phosphatase (ALP) activities, osteocalcin contents, and histology. Mesenchymal stem cells comprised 51% of primary cultured BMSCs. ATP contents were significantly different in OMCSs stored in MEM or HBSS at 22°C and 4°C. LDH release was significantly different in OMCSs stored in HBSS at 22°C and 4°C. The highest LDH release was observed in OMCSs stored in HBSS at 37°C. ALP activities and osteocalcin contents were the lowest in implanted OMCSs stored in HBSS at 37°C at four weeks after subcutaneous implantation. There was a significant difference in the osteocalcin levels of implanted OMCSs stored in MEM at 37°C and HBSS at 4°C. Abundant bone tissue around and inside disks was found in histological sections of OMCSs stored in all preservation conditions except for MEM and HBSS at 37°C. Maintaining the osteogenic ability of OMCSs during transport is important, and preservation of OMCSs in MEM or HBSS at 4°C or 22°C is a simple and inexpensive method.

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2015 ◽  
Author(s):  
Isabel Tovar ◽  
Rosa Guerrero ◽  
Jesús J. López-Peñalver ◽  
José Expósito ◽  
José Mariano Ruiz de Almodóvar

We have previously shown that the combination of radiotherapy with human umbilical-cord-derived mesenchymal stromal/stem cells (MSCs) cell therapy significantly reduces the size of the xenotumors in mice, both in the directly irradiated tumor and in the distant nonirradiated tumor or its metastasis. We have also shown that exosomes secreted from MSCs preirradiated with 2 Gy are quantitatively, functionally and qualitatively different from the exosomes secreted from nonirradiated mesenchymal cells, and also that proteins, exosomes and microvesicles secreted by MSCs suffer a significant change when the cells are activated or nonactivated, with the amount of protein present in the exosomes of the preirradiated cells being 1.5 times greater compared to those from nonirradiated cells. This finding correlates with a dramatic increase in the antitumor activity of the radiotherapy when is combined with MSCs or with preirradiated mesenchymal stromal/stem cells (MSCs*). After the proteomic analysis of the load of the exosomes released from both irradiated and nonirradiated cells, we conclude that annexin A1 is the most important and significant difference between the exosomes released by the cells in either status. Knowing the role of annexin A1 in the control of hypoxia and inflammation that is characteristic of acute respiratory-distress syndrome (ARDS), we designed a hypothetical therapeutic strategy, based on the transplantation of mesenchymal stromal/stem cells stimulated with radiation, to alleviate the symptoms of patients who, due to pneumonia caused by SARS-CoV-2, require to be admitted to an intensive care unit for patients with life-threatening conditions. With this hypothesis, we seek to improve the patients’ respiratory capacity and increase the expectations of their cure.


2008 ◽  
Vol 396-398 ◽  
pp. 123-126
Author(s):  
Timothy Wilson ◽  
Reeta Viitala ◽  
Mervi Puska ◽  
Mika Jokinen ◽  
Risto Penttinen

The role of silica and macrophages in fibrosis is well documented, but in bone formation it is relatively unknown despite decades of research with bioactive glasses. In this study macrophages were isolated from rat peritoneal and then cultured for five days in the presence of two types of silica microparticles with different solubilities. After the fifth day the culture medium was collected, purified and used as an additive in bone marrow derived rat stem cell cultures. The stem cells were cultured for five days in α-mem containing only 0,5% of FCS, enabling cell survival but disrupting their proliferation. As controls, stem cells were also cultured in α-mem containing silica microparticles. At days one and five the amount of soluble collagen was assayed from the culture medium and the cells were counted. All stem cell cultures with macrophage medium additives were found to be proliferative, with statistically significant difference to controls. However, collagen was only produced in cultures containing medium from macrophages cultured with fast-dissolving silica microparticles. This suggests that silica can induce cell proliferation and extra cellular matrix protein secretion which is mediated by macrophages, and that the solubility of silica is also a major factor in this reaction.


2018 ◽  
Vol 19 (10) ◽  
pp. 3240 ◽  
Author(s):  
Nicola Tempest ◽  
Alison Maclean ◽  
Dharani Hapangama

The human endometrium is a highly regenerative organ undergoing over 400 cycles of shedding and regeneration over a woman’s lifetime. Menstrual shedding and the subsequent repair of the functional layer of the endometrium is a process unique to humans and higher-order primates. This massive regenerative capacity is thought to have a stem cell basis, with human endometrial stromal stem cells having already been extensively studied. Studies on endometrial epithelial stem cells are sparse, and the current belief is that the endometrial epithelial stem cells reside in the terminal ends of the basalis glands at the endometrial/myometrial interface. Since almost all endometrial pathologies are thought to originate from aberrations in stem cells that regularly regenerate the functionalis layer, expansion of our current understanding of stem cells is necessary in order for curative treatment strategies to be developed. This review critically appraises the postulated markers in order to identify endometrial stem cells. It also examines the current evidence supporting the existence of epithelial stem cells in the human endometrium that are likely to be involved both in glandular regeneration and in the pathogenesis of endometrial proliferative diseases such as endometriosis and endometrial cancer.


2010 ◽  
Vol 21 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Fernanda Campos Rosetti Lessa ◽  
Andreza Maria Fábio Aranha ◽  
Josimeri Hebling ◽  
Carlos Alberto de Souza Costa

This study evaluated the cytotoxic effects of 2 mineral trioxide aggregate (MTA) cements - White-MTA-Angelus and a new formulation, MTA-Bio - on odontoblast-like cell (MDPC-23) cultures. Twenty-four disc-shaped (2 mm diameter x 2 mm thick) specimens were fabricated from each material and immersed individually in wells containing 1 mL of DMEM culture medium for either 24 h or 7 days to obtain extracts, giving rise to 4 groups of 12 specimens each: G1 - White-MTA/24 h; G2 - White-MTA/7 days; G3 - MTA-Bio/24 h; and G4 - MTA-Bio/7 days. Plain culture medium (DMEM) was used as a negative control (G5). Cells at 30,000 cells/cm² concentration were seeded in the wells of 24-well plates and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. After this period, the culture medium of each well was replaced by 1 mL of extract (or plain DMEM in the control group) and the cells were incubated for additional 2 h. Cell metabolism was evaluated by the MTT assay and the data were analyzed statistically by ANOVA and Tukey's test (α=0.05). Cell morphology and the surface of representative MTA specimens of each group were examined by scanning electron microscopy. There was no statistically significant difference (p>0.05) between G1 and G2 or between G3 and G4. No significant difference (p>0.05) was found between the experimental and control groups either. Similar cell organization and morphology were observed in all groups, regardless of the storage periods. However, the number of cells observed in the experimental groups decreased compared to the control group. MTA-Bio presented irregular surface with more porosities than White-MTA. In conclusion, White-MTA and MTA-Bio presented low cytotoxic effects on odontoblast-like cell (MDPC-23) cultures.


2012 ◽  
Vol 17 (4) ◽  
pp. 110-114
Author(s):  
Rogério Lacerda dos Santos ◽  
Matheus Melo Pithon ◽  
Fernanda Otaviano Martins ◽  
Maria Teresa Villela Romanos

OBJECTIVE: To test the hypothesis that there is no difference in cytotoxicity between separating elastics of different manufacturers. METHODS: The present article compared latex elastics (4.0 mm, 4.4 mm and 4.8 mm) of four different manufacturers. The sample was allocated to seven groups of 9 elastics: Group A (American Orthodontics, green color, modules), Groups M1 and M2 (Morelli, blue color, modules and free in pack respectively), Groups M3 and M4 (Morelli, green color, modules and free in pack respectively), Group U (Uniden, blue color, free in pack) and Group T (Tecnident, blue color, free in pack) regarding their possible cytotoxic effects on oral tissues. Cytotoxicity assays were performed using cell culture medium containing epithelioid-type cells (Hep-2 line) derived from human laryngeal carcinoma and submitted to the methods for evaluating the cytotoxicity by the "dye-uptake" test, at time intervals 24, 48, 72 and 168 h. Data were compared by analysis of variance (ANOVA) and Tukey's test (p < 0.05). RESULTS: Results showed statistically significant difference (p < 0.05) between group U and all the other Groups (A, M1, M2, M3, M 4 and T) at 24 and 48 hours. CONCLUSIONS: Uniden elastics evoked more cell lysis at 24 and 48 h, although, all brands showed biocompatibility from 72 h onwards.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 265
Author(s):  
Tullio Genova ◽  
Davide Cavagnetto ◽  
Fabio Tasinato ◽  
Sara Petrillo ◽  
Federico Alessandro Ruffinatti ◽  
...  

Mesenchymal stem cells (MSCs) can be harvested from different sites in the oral cavity, representing a reservoir of cells useful for regenerative purposes. As direct comparisons between at least two types of MSCs deriving from the same patient are surprisingly rare in scientific literature, we isolated and investigated the osteoinductive potential of dental pulp stem cells (DPSCs) and buccal fat pad stem cells (BFPSCs). MSCs were isolated from the third molar dental pulp and buccal fat pads of 12 patients. The number of viable cells was quantified through manual count. Proliferation and osteodifferentiation assays, flow cytometry analysis of cell phenotypes, and osteocalcin release in vitro were performed. The isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%) and 3 out of 12 (25%) of retrieved samples, respectively. The yield of cells expressing typical stem cell markers and the level of proliferation were higher in BFPSCs than in DPSCs. Both BFP-SCs and DPSCs differentiated into osteoblast-like cells and were able to release a mineralized matrix. The release of osteocalcin, albeit greater for BFPSCs, did not show any significant difference between BFPSCs and DPSCs. The yield of MSCs depends on their site of origin as well as on the protocol adopted for their isolation. Our data show that BFP is a valuable source for the derivation of MSCs that can be used for regenerative treatments.


2021 ◽  
Vol 28 (1) ◽  
pp. 19-24
Author(s):  
Ari Alauddin Mawdudi ◽  
Furqan Hidayatullah ◽  
Indra Bachtiar ◽  
Arif Rachman ◽  
Indri Lakhsmi Putri ◽  
...  

Objective: To determine the effect of conditioned medium human Adipose-Derived Mesenchymal Stem Cells (CM-hADMSC) on apoptosis of urothelial bladder cancer cells. Material & Methods: Bladder (5637) cancer cell lines cultured in conditioned media harvested from human adipose-derived mesenchymal stem cells (hADMSC). Flow cytometry tests were carried out using the Flowcytometry Acquisition cell sorting (FACS) Calibur to measure apoptosis. Results: There was a significant difference in the percentage of late apoptosis in the group receiving culture medium treatment: CM-hADMSC 1: 1 to the entire study group. Further analysis revealed no difference in the average percentage of late apoptosis in groups exposed to culture medium: CM-hADMSC 1: 2 and culture medium: CM-hADMSC 1: 4 (p> 0.05). Conclusion: CM-hADMSC at a 1: 1 dose concentration to culture medium obtain a significant increase of apoptosis in bladder cancer cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 278
Author(s):  
Morio Yamazaki ◽  
Kotaro Sugimoto ◽  
Yo Mabuchi ◽  
Rina Yamashita ◽  
Naoki Ichikawa-Tomikawa ◽  
...  

Junctional adhesion molecules (JAMs) are expressed in diverse types of stem and progenitor cells, but their physiological significance has yet to be established. Here, we report that JAMs exhibit a novel mode of interaction and biological activity in adipose-derived stromal/stem cells (ADSCs). Among the JAM family members, JAM-B and JAM-C were concentrated along the cell membranes of mouse ADSCs. JAM-C but not JAM-B was broadly distributed in the interstitial spaces of mouse adipose tissue. Interestingly, the JAM-C ectodomain was cleaved and secreted as a soluble form (sJAM-C) in vitro and in vivo, leading to deposition in the fat interstitial tissue. When ADSCs were grown in culture plates coated with sJAM-C, cell adhesion, cell proliferation and the expression of five mesenchymal stem cell markers, Cd44, Cd105, Cd140a, Cd166 and Sca-1, were significantly elevated. Moreover, immunoprecipitation assay showed that sJAM-C formed a complex with JAM-B. Using CRISPR/Cas9-based genome editing, we also demonstrated that sJAM-C was coupled with JAM-B to stimulate ADSC adhesion and maintenance. Together, these findings provide insight into the unique function of sJAM-C in ADSCs. We propose that JAMs contribute not only to cell–cell adhesion, but also to cell–matrix adhesion, by excising their ectodomain and functioning as a niche-like microenvironment for stem and progenitor cells.


2021 ◽  
Vol 32 (3) ◽  
pp. 65-74
Author(s):  
Marlus da Silva Pedrosa ◽  
Tomaz Alves ◽  
Fernando Neves Nogueira ◽  
Marinella Holzhausen ◽  
Carla Renata Sipert

Abstract This study investigated the effect of three commercial calcium silicate-based materials (CSBM) on cytotoxicity and pro-and anti-inflammatory cytokines production in cultured human periodontal ligament stem cells (hPDLSCs). Culture of hPDLSCs was established and characterized. Extracts of Bio-C Sealer (Angelus, Londrina, PR, Brazil), MTA Fillapex (Angelus, Londrina, PR, Brazil) and PBS Cimmo HP (Cimmo Soluções em Saúde, Pouso Alegre, MG, Brazil) were prepared by placing cement specimens (5 x 3 mm) in culture medium. Then, the extracts were serially two-fold diluted (1, 1:2, 1:4, 1:8, 1:16) and inserted into the cell-seeded wells for 24, 48 and 72 h for MTT assays. TNF-α and IL-10 cytokines were quantified by ELISA at 24h-cell supernatants. Data were analyzed by ANOVA and Tukey’s test (α = 0.05). All CSBM exhibited some cytotoxicity that varied according to extract concentration and time of evaluation. MTA Fillapex presented the highest cytotoxic effects with significant reduction of metabolic activity/cell viability when compared to Bio-C Sealer and Cimmo HP®. TNF-α was significantly upregulated by the three tested cements (p < 0.05) while only MTA Fillapex significantly upregulated IL-10 in comparison to control. Taken collectively, the results showed that PBS Cimmo HP®, Bio-C Sealer and MTA Fillapex present mild and transient cytotoxicity and slightly induced TNF-α production. MTA Fillapex upregulated IL-10 release by hPDLSCs.


Sign in / Sign up

Export Citation Format

Share Document