Effect of surface treatment of carbon fibers on the mechanical and frictional properties of polyetheretherketone/polytetrafluoroethylene composites: Experimentation and finite element analysis

Author(s):  
Wei Xiao ◽  
Xin Ji

Polytetrafluoroethylene has many excellent properties and a wide range of applications, but its poor wear resistance, hardness, and creep resistance have severely limited the use of the polytetrafluoroethylene composites. In this work, the surface of carbon fibers was treated with silane coupling agent acetone solution, and then sintering technology was used to prepare carbon fibers/polyetheretherketone (PEEK)/ polytetrafluoroethylene composites. The mechanical and frictional wear properties of the composites were analyzed using an electronic tensile tester, a Shore hardness tester, and a frictional wear tester, and scanning electron microscopy was applied to analyze the surface morphology of the composites after wear. The experimental results shown that the addition of carbon fibers could significantly improve the mechanical properties of the composites, reduce the radial shrinkage, and increase the Shore hardness of the composites. Under the same experimental conditions, the carbon fibers (20 wt.%) /polyetheretherketone/polytetrafluoroethylene composites has the best wear resistance, with a friction coefficient of 0.196 and the wear rate of 2.41 ×  10−6 mm3/N·m. In the theoretical simulation, the thermal conductivity of polytetrafluoroethylene composites was predicted using ANSYS software, with the changes in the temperature and friction force in the friction process. The theoretical simulation results matched with the experimental values, which proved the accuracy of the theoretical simulations.

2017 ◽  
Vol 893 ◽  
pp. 340-344
Author(s):  
Sheng Dai ◽  
Dun Wen Zuo ◽  
Xian Rui Zhao ◽  
Jin Fang Wang

To improve the surface hardness and wear resistance of metal parts. Ni-based chromic carbidecomposite coating was prepared on the carbon steel (0.45 mass% C) substrates by laser cladding. Microstructure and wear properties of composite coatings were investigated by SEM, EDS, XRD, Vickers micro-hardness tester and wear machine. The results show that good metallurgical bonding between the Ni-based chromic carbidecomposite coating and carbon steel substrate. Micro-hardness of Ni-based Cr3C2 composite coating along the layer depth presents an evident stepladder distribution. The average micro-hardness of the laser clad coating is about 950 HV. The result of wear experiment shows that Ni-based Cr3C2 composite coating processes good wear resistance.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 338 ◽  
Author(s):  
Sergey V. Panin ◽  
Lyudmila A. Kornienko ◽  
Vladislav O. Alexenko ◽  
Dmitry G. Buslovich ◽  
Svetlana A. Bochkareva ◽  
...  

The aim of the study was to develop a design methodology for the UltraHigh Molecular Weight Polyethylene (UHMWPE)-based composites used in friction units. To achieve this, stress–strain analysis was done using computer simulation of the triboloading processes. In addition, the effects of carbon fiber size used as reinforcing fillers on formation of the subsurface layer structures at the tribological contacts as well as composite wear resistance were evaluated. A structural analysis of the friction surfaces and the subsurface layers of UHMWPE as well as the UHMWPE-based composites loaded with the carbon fibers of various (nano-, micro-, millimeter) sizes in a wide range of tribological loading conditions was performed. It was shown that, under the “moderate” tribological loading conditions (60 N, 0.3 m/s), the carbon nanofibers (with a loading degree up to 0.5 wt.%) were the most efficient filler. The latter acted as a solid lubricant. As a result, wear resistance increased by 2.7 times. Under the “heavy” test conditions (140 N, 0.5 m/s), the chopped carbon fibers with a length of 2 mm and the optimal loading degree of 10 wt.% were more efficient. The mechanism is underlined by perceiving the action of compressive and shear loads from the counterpart and protecting the tribological contact surface from intense wear. In doing so, wear resistance had doubled, and other mechanical properties had also improved. It was found that simultaneous loading of UHMWPE with Carbon Nano Fibers (CNF) as a solid lubricant and Long Carbon Fibers (LCF) as reinforcing carbon fibers, provided the prescribed mechanical and tribological properties in the entire investigated range of the “load–sliding speed” conditions of tribological loading.


2006 ◽  
Vol 317-318 ◽  
pp. 351-354
Author(s):  
Mark I. Jones ◽  
Kiyoshi Hirao ◽  
Hideki Hyuga ◽  
Yukihiko Yamauchi

The effects of microstructure and composition on the wear properties of Lu sialon ceramics have been studied under dry sliding conditions through block-on-ring wear tests. Microstructural and compositional effects on wear behaviour were studied by producing both equiaxed and elongated α sialons through the incorporation of additional oxides to promote extended liquid formation and grain growth, and by producing α / β composite materials with elongated β grains. The wear response of the materials is discussed in terms of the dominant wear mechanism under different experimental conditions. Under higher loads, where fracture dominates, materials with improved mechanical properties show better wear resistance and both the composite materials and the elongated α sialons showed lower wear rates than the equiaxed materials due to the elongated grain microstructures. Under low normal loads, fracture does not occur and the dominant wear mechanism is thought to be tribochemically assisted wear. Under these conditions, the equiaxed materials had better wear resistance than the composites, and the Lu-α sialon showed an order of magnitude lower wear rate than an equivalent Y-α sialon, thought to be due to better oxidation resistance and improved refractory nature afforded through the use of the smaller radius cation. The elongated Lu-α sialons under these low load conditions showed wear resistance that was to some extent dependent on the composition of the additional liquid phase, with high SiO2 contents leading to higher wear rates.


2015 ◽  
Vol 16 (2) ◽  
pp. 360-372
Author(s):  
H.O. Sirenko ◽  
A.V. Lutsas ◽  
M.B. Skladanyuk ◽  
L.M. Soltys

The anti-wear properties of polymer composites based on polytetrafluoroethylene with not metallized and metallized carbon fibers in conditions of friction and wear in over limit and limit of specific loads have been researched. The definitions of loading and time indicators the aftereffect which give the quantitative assessment of influence processes and mechanism of friction and wear have been introduced first. It is established that in anti-wear tests of composites samples as in stepped over limit specific load (Ni=var) as in constant limit and specific load (Ni=const) with high probability appears time aftereffect.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2019 ◽  
Author(s):  
Christopher John ◽  
Greg M. Swain ◽  
Robert P. Hausinger ◽  
Denis A. Proshlyakov

2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an <i>in situ</i> structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semi-empirical computational methods, demonstrating that the Fe (III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and 171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.


Alloy Digest ◽  
1993 ◽  
Vol 42 (2) ◽  

Abstract Durcomet 100 is an improved version of Alloy CD-4 MCu with better corrosion and wear resistance. The alloy is used in the annealed condition and possesses excellent corrosion resistance over a wide range of corrosion environments. Mechanical strength is also very high. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-540. Producer or source: Duriron Company Inc.


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Author(s):  
Baoliang Chen ◽  
Peng Liu ◽  
Feiyun Xiao ◽  
Zhengshi Liu ◽  
Yong Wang

Quantitative assessment is crucial for the evaluation of human postural balance. The force plate system is the key quantitative balance assessment method. The purpose of this study is to review the important concepts in balance assessment and analyze the experimental conditions, parameter variables, and application scope based on force plate technology. As there is a wide range of balance assessment tests and a variety of commercial force plate systems to choose from, there is room for further improvement of the test details and evaluation variables of the balance assessment. The recommendations presented in this article are the foundation and key part of the postural balance assessment; these recommendations focus on the type of force plate, the subject’s foot posture, and the choice of assessment variables, which further enriches the content of posturography. In order to promote a more reasonable balance assessment method based on force plates, further methodological research and a stronger consensus are still needed.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 989
Author(s):  
Donghyun Lee ◽  
Junghwan Kim ◽  
Sang-Kwan Lee ◽  
Yangdo Kim ◽  
Sang-Bok Lee ◽  
...  

In this study, to evaluate the effect of boron carbide (B4C) addition on the wear performance of aluminum (Al), Al6061 and 5, 10, and 20 vol.% B4C/Al6061 composites were manufactured using the stir casting and hot rolling processes. B4C particles were randomly dispersed during the stir casting process; then, B4C particles were arranged in the rolling direction using a hot rolling process to further improve the B4C dispersion and wear resistance of the composites. Furthermore, a continuous interfacial layer between B4C and the Al6061 matrix was generated by diffusion of titanium (Ti) and chromium (Cr) atoms contained in the Al6061 alloy. Wear depth and width of the composites decreased with increasing B4C content. Furthermore, with B4C addition, coefficient of friction (COF) improved as compared with that of Al6061. The results indicate that interface-controlled, well-aligned B4C particles in the friction direction can effectively increase the wear properties of Al alloys and improve their hardness.


Sign in / Sign up

Export Citation Format

Share Document