scholarly journals Increasing Wear Resistance of UHMWPE by Loading Enforcing Carbon Fibers: Effect of Irreversible and Elastic Deformation, Friction Heating, and Filler Size

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 338 ◽  
Author(s):  
Sergey V. Panin ◽  
Lyudmila A. Kornienko ◽  
Vladislav O. Alexenko ◽  
Dmitry G. Buslovich ◽  
Svetlana A. Bochkareva ◽  
...  

The aim of the study was to develop a design methodology for the UltraHigh Molecular Weight Polyethylene (UHMWPE)-based composites used in friction units. To achieve this, stress–strain analysis was done using computer simulation of the triboloading processes. In addition, the effects of carbon fiber size used as reinforcing fillers on formation of the subsurface layer structures at the tribological contacts as well as composite wear resistance were evaluated. A structural analysis of the friction surfaces and the subsurface layers of UHMWPE as well as the UHMWPE-based composites loaded with the carbon fibers of various (nano-, micro-, millimeter) sizes in a wide range of tribological loading conditions was performed. It was shown that, under the “moderate” tribological loading conditions (60 N, 0.3 m/s), the carbon nanofibers (with a loading degree up to 0.5 wt.%) were the most efficient filler. The latter acted as a solid lubricant. As a result, wear resistance increased by 2.7 times. Under the “heavy” test conditions (140 N, 0.5 m/s), the chopped carbon fibers with a length of 2 mm and the optimal loading degree of 10 wt.% were more efficient. The mechanism is underlined by perceiving the action of compressive and shear loads from the counterpart and protecting the tribological contact surface from intense wear. In doing so, wear resistance had doubled, and other mechanical properties had also improved. It was found that simultaneous loading of UHMWPE with Carbon Nano Fibers (CNF) as a solid lubricant and Long Carbon Fibers (LCF) as reinforcing carbon fibers, provided the prescribed mechanical and tribological properties in the entire investigated range of the “load–sliding speed” conditions of tribological loading.

2019 ◽  
Vol 32 (6) ◽  
pp. 645-654
Author(s):  
Xiaotao Qiu ◽  
Congli Fu ◽  
Aiqun Gu ◽  
Yang Gao ◽  
Xiuli Wang ◽  
...  

High-performance anti-wear polyetheretherketone/polytetrafluoroethylene (PEEK/PTFE) blends have drawn much attention over the past few years, owing to their wide range of potential applications. However, a convenient and effective method to prepare such blends with superior mechanical and tribological properties is still lacking. In this work, we propose a promising approach that uses melt-processable PTFE (MP PTFE), instead of conventional PTFE, to prepare anti-wear blends. MP PTFE, with melt flow abilities under appropriate conditions, can disperse homogeneously in PEEK, enhancing both the mechanical and tribological properties of the PEEK/PTFE blend. To prove this postulation, in this work, both MP PTFE and commercial PTFE were blended with PEEK, separately, and the effects of PTFE type and content on the tensile and tribological properties of the blends were studied. The results showed that, although the addition of commercial PTFE to PEEK could increase the wear resistance, it decreased the tensile strength of PEEK significantly. Compared to the blends with commercial PTFE, the blends with MP PTFE exhibited better tribological performance and higher tensile strength for PTFE content below 10 wt%. It was confirmed that the better dispersion of MP PTFE in PEEK endowed the blends with higher tensile strength. The surface analysis indicated that the MP PTFE could readily migrate to and enrich the surfaces of the blends. The relatively high PTFE content on the surface favored the formation of tribo-films, enhancing the tribological properties of the blends.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2837
Author(s):  
Sergey V. Panin ◽  
Jiangkun Luo ◽  
Dmitry G. Buslovich ◽  
Vladislav O. Alexenko ◽  
Lyudmila A. Kornienko ◽  
...  

The structure, mechanical and tribological properties of the polyimide-based composites reinforced with chopped carbon fibers (CCF) and loaded with solid-lubricant commercially available fillers of various natures were investigated. The metal- and ceramic counterparts were employed for tribological testing. Micron sized powders of PTFE, colloidal graphite and molybdenum disulfide were used for solid lubrication. It was shown that elastic modulus was enhanced by up to 2.5 times, while ultimate tensile strength was increased by up 1.5 times. The scheme and tribological loading conditions exerted the great effect on wear resistance of the composites. In the tribological tests by the ‘pin-on-disk’ scheme, wear rate decreased down to ~290 times for the metal-polymer tribological contact and to ~285 times for the ceramic-polymer one (compared to those for neat PI). In the tribological tests against the rougher counterpart (Ra~0.2 μm, the ‘block-on-ring’ scheme) three-component composites with both graphite and MoS2 exhibited high wear resistance. Under the “block-on-ring” scheme, the possibility of the transfer film formation was minimized, since the large-area counterpart slid against the ‘non-renewable’ surface of the polymer composite (at a ‘shortage’ of solid lubricant particles). On the other hand, graphite and MoS2 particles served as reinforcing inclusions. Finally, numerical simulation of the tribological test according to the ‘block-on-ring’ scheme was carried out. Within the framework of the implemented model, the counterpart roughness level exerted the significantly greater effect on wear rate in contrast to the porosity.


2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


Author(s):  
Wei Xiao ◽  
Xin Ji

Polytetrafluoroethylene has many excellent properties and a wide range of applications, but its poor wear resistance, hardness, and creep resistance have severely limited the use of the polytetrafluoroethylene composites. In this work, the surface of carbon fibers was treated with silane coupling agent acetone solution, and then sintering technology was used to prepare carbon fibers/polyetheretherketone (PEEK)/ polytetrafluoroethylene composites. The mechanical and frictional wear properties of the composites were analyzed using an electronic tensile tester, a Shore hardness tester, and a frictional wear tester, and scanning electron microscopy was applied to analyze the surface morphology of the composites after wear. The experimental results shown that the addition of carbon fibers could significantly improve the mechanical properties of the composites, reduce the radial shrinkage, and increase the Shore hardness of the composites. Under the same experimental conditions, the carbon fibers (20 wt.%) /polyetheretherketone/polytetrafluoroethylene composites has the best wear resistance, with a friction coefficient of 0.196 and the wear rate of 2.41 ×  10−6 mm3/N·m. In the theoretical simulation, the thermal conductivity of polytetrafluoroethylene composites was predicted using ANSYS software, with the changes in the temperature and friction force in the friction process. The theoretical simulation results matched with the experimental values, which proved the accuracy of the theoretical simulations.


Author(s):  
Sergey V. Panin ◽  
Vladislav О. Alexenko ◽  
Lyudmila А. Kornienko ◽  
Dmitry G. Buslovich ◽  
Natalya N. Valentyukevich

Multicomponent composites with ultra-high molecular weight polyethylene (UHMWPE) matrix reinforced by short carbon fibers (CF) and filled with solid lubricant particles of finely dispersed polytetrafluoroethylene (PTFE) have been studied. It is shown that simultaneous loading of two kinds of microfillers (enforcing and solid lubricant) ensures increasing both mechanical properties (elastic modulus, yield point, shore D hardness) and wear resistance of three-component UHMWPE composites at variation of triboloading conditions. It is shown that at moderate sliding velocity (V = 0.3 m/s) and load (P = 60 N) the rational composition providing maximum wear resistance under dry sliding friction is “UHMWPE + 5 wt. % fluorolite + 5 wt. % CF” (wear resistance is doubled). The latter results from the pattern of the formed permolecular structure and friction surface material response onto tribotechnical loading (due to formation of transfer film).Under severe tribotesting conditions (P = 140 N × V = 0.5 m/s) the two-fold increase in wear resistance demonstrates the composite “UHMWPE + 5 wt. % fluorolite + 10 wt. % CF”. This effect is mostly governed by enforcing action of short carbon fibers. The mechanism of this improvement might be explained in the following way. Friction heating induced increase of the temperature gives rise to local melting and surface layer plasticization. Presence of enforcing fibers ensures better protection of the friction surface from combined action of compressive and shear forces transferred from rotating steel counterface. Friction coefficient, topography of wear track surfaces and wear mechanisms of multicomponent UHMWPE composites are discussed taking into account the data on permolecular structure formation and the temperature in the tribocontact zone.  


2020 ◽  
pp. 394-400
Author(s):  
S.V. Panin ◽  
Lo Jiangkun ◽  
D.G. Buslovich ◽  
V.O. Aleksenko ◽  
L.A. Kornienko

The mechanical and tribological properties of thermoplastic polyimide based composites loaded with polytetrafl uoroethylene and milled carbon fibers, annealed and functionalized with a KH550 silane-coupling agent were studied. It has been revealed that, compared with neat PI, the composite with annealed carbon fibers and PTFE particles possessed the highest wear resistance. Reinforcing carbon fibers of hundreds micron size increase the elastic modulus by 2 times; while all other physical and mechanical properties remain at the level of unfilled PI.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 224 ◽  
Author(s):  
Andrey P. Vasilev ◽  
Tatyana S. Struchkova ◽  
Leonid A. Nikiforov ◽  
Aitalina A. Okhlopkova ◽  
Petr N. Grakovich ◽  
...  

Mixtures of layered silicates (vermiculite and kaolinite) and carbon fibers were investigated as filler materials for polytetrafluoroethylene. The supramolecular structure and the tribological and mechanical properties of the resulting polymer composite materials were evaluated. The yield strength and compressive strength of the polymer increased by 55% and 60%, respectively, when a mixed filler was used, which was attributed to supramolecular reinforcement of the composites. In addition, the wear resistance increased by 850 times when using vermiculite/kaolinite fillers, which was due to protection of the surface by the formation of hard tribofilms.


2019 ◽  
Vol 945 ◽  
pp. 362-368 ◽  
Author(s):  
O.V. Gogoleva ◽  
P.N. Petrova ◽  
E.S. Kolesova

The present study investigates the influence of carbon fibers of LO-1-12N/40 brand and modified carbon fibers of "Belum" brand on performance properties and structure of polymer composite materials based on UHMWPE of Gur-4150 grade. It has been established that introduction of both modified carbon fibers and LO-1-12N/40 carbon fiber in an amount of from 1 to 10 wt.% into the polymer matrix does not lead to significant changes in stress-strain properties of composites compared to the starting polymer. It is shown that the wear resistance of the obtained materials is significantly increased when filling with 5 wt.% carbon fibers of "Belum" brand. The rate of mass wear of polymer composite materials is reduced by 3.3 times; the friction coefficient of PCM is lowered by 3.5 times relative to the starting polymer.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Sign in / Sign up

Export Citation Format

Share Document