scholarly journals Friction and adhesive wear behavior caused by periodic impact in mixed-lubricated point contacts

2020 ◽  
Vol 12 (2) ◽  
pp. 168781402090166
Author(s):  
Xin Pei ◽  
Wei Pu ◽  
Jialong Yang ◽  
Ying Zhang

Periodic impact is a common phenomenon experienced by functional components. The mechanisms governing the adhesive wear growth caused by the periodic impact are not well understood, which limits the development of antiwear and lubricating behavior. In this work, the periodic impact action caused by rubbing surface velocity and contact load is studied in the sliding wear process under mixed lubrication condition. At each wear simulation circle, the material removal at each asperity contact location is evaluated and the surface topography is renewed correspondingly. The evolutions of friction and wear track are revealed during wear process. We find that the friction coefficient changes periodically caused by the periodic speed, and the wear rate increases almost linearly with either speed period or speed amplitude. The load impact results in an abrupt variation in friction coefficient, while it appears to be limited in adhesive wear state compared to speed, highlighting the critical role of velocity impact in wear formation.

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Yazhao Zhang ◽  
Alexander Kovalev ◽  
Noriyuki Hayashi ◽  
Kensuke Nishiura ◽  
Yonggang Meng

A stochastic model for predicting the evolutions of wear profile and surface height probability density function (PDF) of initial line contacts during running-in under mixed lubrication condition is presented. A numerical approach was developed on the basis of stochastic solution of mixed lubrication, which combined the Patir and Cheng's average flow model for calculation of the hydrodynamic pressure and the Kogut and Etsion's (KE) rough surface contact model for calculation of the asperity contact pressure. The total friction force was assumed to be the sum of the boundary friction at the contact asperities and the integration of viscous shear stress in the hydrodynamic region. The wear depth on the contact region was estimated according to the modified Archard's wear model using the asperity contact pressure. Sugimura's wear model was modified and used to link the wear particle size distribution and the variation of surface height PDF during wear. In the wear process, the variations of profile and surface height PDF of initial line contacts were calculated step by step in time, and the pressure distribution, friction coefficient, and wear rate were updated consequently. The effect of size distribution of wear particles on the wear process was numerically investigated, and the simulation results showed that the lubrication condition in which small wear particles are generated from the asperity contact region is beneficial to reduce friction coefficient and wear rate, and leads to a better steady mixed lubrication condition.


2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


2015 ◽  
Vol 1120-1121 ◽  
pp. 702-706
Author(s):  
Gui Rong Yang ◽  
Chao Peng Huang ◽  
Wen Ming Song ◽  
Ying Ma ◽  
Yuan Hao

The Ni/WC/G composite coating was fabricated through vacuum cladding. The effect of graphite content on the wear behavior was investigated, and the worn surface was observed through scanning electron microscopy (SEM). The friction coefficient decreased with the increasing graphite content until the graphite content was 6%, and then increased when the graphite content was 8%. The wear rate decreased with the increasing graphite content for all graphite content. The wear loss of GCr15plate decreased with the increasing graphite content until the graphite content was 6%, and the wear loss of plate was rising when graphite was 8%. There was a layer composed of wear debris that containing oxides and graphite. The covering area increased with the increasing graphite content, which agreed with the changing trend of friction coefficient and wear rate. The net texture-like structure was formed among the composite coating, which could be the main support for load during wear process. There was little single WC particle protruding for support the wear load. Therefore, the Ni-based substrate was not easily to be worn.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2443
Author(s):  
Jingjing Li ◽  
Jiang Ju ◽  
Weiwei Chang ◽  
Chao Yang ◽  
Jun Wang

In this study, a high aluminum and chromium Fe-B-C coating was prepared using laser cladding on 2Cr13 steel substrate. The microstructure, microhardness, and wear resistance of the high aluminum and chromium Fe-B-C coating were investigated. The results show that this dense coating possesses good metallurgical bond with the substrate. The microstructure is mainly composed of α-(Fe, Cr, Al) lath martensite, orthorhombic M2B boride, orthogonal M3C2, and orthorhombic M7C3 carbides. The microhardness of the coating can reach 620 HV which is 3.3-times higher than that (190 HV) of the substrate. The coating shows a lower friction coefficient of 0.75 than that of the substrate (1.08). The wear rates of the substrate and the coating are 0.295 mg/min and 0.103 mg/min, respectively, indicating the coating exhibits excellent wear resistance. The wear mechanism transforms severe adhesive wear and abrasive wear of the substrate to slight abrasive wear of the coating. The results can provide technical support to improve the properties of the Fe-based laser cladded coating.


2021 ◽  
Vol 19 (1) ◽  
pp. 023
Author(s):  
Hui Cao ◽  
Yu Tian ◽  
Yonggang Meng

Adhesive wear is one of the four major wear mechanisms and very common in almost all macro-, micro- or nanotribosystems. In an adhesive wear process, tiny material fragments are pulled off from one sliding surface and adhered onto the counterpart. Later these fragments form loose particles or transfer between the contact surfaces. Because of the topographical and physicochemical property non-uniformity of engineering surfaces, adhesive wear happens heterogeneously on the loaded sliding surfaces, and it is also discontinuous during sliding or rolling motion owing to the damage accumulation and fracture occurred inside the subsurface layers. Taking account of these characteristics, a novel fracture-induced adhesive wear criterion has been proposed in this study in order to predict local wear of material in sliding. Moreover, the proposed wear criterion is applied to predicting wear particle formation and morphology evolution of mixed lubricated rough surfaces during reciprocating sliding, and the simulation results are compared with the ball-on-disk experimental measurements.


2008 ◽  
Vol 368-372 ◽  
pp. 1307-1309 ◽  
Author(s):  
Li Yun Zheng ◽  
Li Xin Zhao ◽  
Jing Jun Zhang

Ti(C,N)-based cermets were coated with a TiN/TiAlN coating using ion plating technology. The sliding wear test was performed for the coated cermets and the microstructure, composition and surface roughness of the coated cermets under different velocities and loads were characterized. The results showed that the friction coefficients of the coated cermets were lower than that of the neat cermets. Under the same load, the adhesion phenomenon of the counterpart materials on the specimens was improved and the mean friction coefficient increased with increasing sliding speed. Under the same sliding velocity, the average friction coefficient of the coated cermets was lower under higher load. The wear mechanisms were mainly adhesive wear and abrasive wear.


Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


Author(s):  
Beom-Taek Jang ◽  
Seock-Sam Kim

Steel wires are critical load-bearing components in a wide range of applications such as elevator, cranes, mine haulage etc. The traction machine of elevator which transmits power to wire rope causes micro-slip between wire rope and sheave during reciprocating action. The lubrication condition of wire rope is also changed due to the lack of grease. This study focuses on the wear behavior of steel wire and effect of both dry and grease conditions by using the rolling/sliding contact wear tester done under various slip ratios and rolling speeds. The experimental results of the wear volume curve against the number of revolutions under the grease condition are compared with the results under dry condition. The worn surface of steel wire and the size of wear particles were observed by SEM. In order to quantify the wear amount of steel wire we established an equation and finally obtained the wear coefficient.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


2014 ◽  
Vol 1017 ◽  
pp. 417-422
Author(s):  
Vitchuda Lertphokanont ◽  
Takayuki Sato ◽  
Masahiro Oi ◽  
Minoru Ota ◽  
Keishi Yamaguchi ◽  
...  

A microstructured surface was created on a steel surface by whirling electrical discharge texturing (WEDT) since it was considered that the microstructures could act as lubricant reservoirs to assist the formation of a lubricating film, resulting in reduced friction. In this study, friction tests under engine oil were carried out over a range of loads and sliding speeds. In addition, the surface characteristics of the microstructured surface were also investigated to optimize the friction characteristics of the textured surface through pin-on-disc friction tests. It was found that under the mixed lubrication condition near the boundary condition, textured surfaces with texture-area ratio of approximately 6% and a mean crater diameter of 35 μm were considered as the optimal conditions for reducing the friction coefficient. However, a texture-area ratio of approximately 4% and a mean crater diameter of 35 μm were considered as the optimal conditions for reducing the friction coefficient under the mixed lubrication condition near the elastohydrodynamic lubrication condition. It was considered that when the normal load decreased, the lubrication region changed from the mixed lubrication condition to the hydrodynamic lubrication condition, which meant that the actual contact surface area decreased. The decrease in the actual contact surface area with decreasing texture-area ratio led to a reduction in the friction coefficient. Finally, it was clarified that the friction coefficient was reduced under the optimized conditions of the microstructured surface through a pin-on-disc friction test.


Sign in / Sign up

Export Citation Format

Share Document