scholarly journals Bioactive Metabolites Produced by the Endophytic Fungus Phomopsis sp. YM355364

2014 ◽  
Vol 9 (5) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Kai-Xia Ma ◽  
Xin-Tian Shen ◽  
Rong Huang ◽  
Tang Wang ◽  
Xiao-Song Xie ◽  
...  

A new compound, 16-acetoxycytosporone B (1), along with four known ones, dankasterone A (2), dankasterone B (3), 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (4), and cyclonerodiol oxide (5), were isolated from Phomopsis sp. YM355364, an endophytic fungus of Aconitum carmichaeli. Their structures were characterized by spectral analysis. Compound 2 exhibited significant inhibitory activity against influenza A/Thailand/Kan353/2004(H5N1) pseudovirus with an IC50 value of 3.56 μM. Compounds 1, 2, and 4 showed either moderate or weak antifungal activities against four pathogenic fungi.

2014 ◽  
Vol 9 (3) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Qi-Cun Xuan ◽  
Rong Huang ◽  
You-Wei Chen ◽  
Cui-Ping Miao ◽  
Kai-Xia Ma ◽  
...  

A new sesquiterpene, 10,11-dihydrocyclonerotriol (1), together with two known compounds, catenioblin C (2) and sohirnone A (3), were isolated from Trichoderma longibrachiatum YM311505, an endophytic fungus of Azadirachta indica. Their structures were characterized and identified by spectral analysis. Compounds 1–3 exhibited antifungal activities against Pyricularia oryzae and Candida albicans.


2020 ◽  
Vol 21 (5) ◽  
pp. 438-450
Author(s):  
Ramya Ramchandran ◽  
Swetha Ramesh ◽  
Anviksha A ◽  
RamLal Thakur ◽  
Arunaloke Chakrabarti ◽  
...  

Background:: Antifungal cyclic lipopeptides, bioactive metabolites produced by many species of the genus Bacillus, are promising alternatives to synthetic fungicides and antibiotics for the biocontrol of human pathogenic fungi. In a previous study, the co- production of five antifungal lipopeptides homologues (designated as AF1, AF2, AF3, AF4 and AF5) by the producer strain Bacillus subtilis RLID 12.1 using unoptimized medium was reported; though the two homologues AF3 and AF5 differed by 14 Da and in fatty acid chain length were found effective in antifungal action, the production/ yield rate of these two lipopeptides determined by High-Performance Liquid Chromatography was less in the unoptimized media. Methods:: In this study, the production/yield enhancement of the two compounds AF3 and AF5 was specifically targeted. Following the statistical optimization (Plackett-Burman and Box-Behnken designs) of media formulation, temperature and growth conditions, the production of AF3 and AF5 was improved by about 25.8- and 7.4-folds, respectively under static conditions. Results:: To boost the production of these two homologous lipopeptides in the optimized media, heat-inactivated Candida albicans cells were used as a supplement resulting in 34- and 14-fold increase of AF3 and AF5, respectively. Four clinical Candida auris isolates had AF3 and AF5 MICs (100 % inhibition) ranging between 4 and 16 μg/ml indicating the lipopeptide’s clinical potential. To determine the in vitro pharmacodynamic potential of AF3 and AF5, time-kill assays were conducted which showed that AF3 (at 4X and 8X concentrations) at 48h exhibited mean log reductions of 2.31 and 3.14 CFU/ml of C. albicans SC 5314, respectively whereas AF5 at 8X concentration showed a mean log reduction of 2.14 CFU/ml. Conclusion:: With the increasing threat of multidrug-resistant yeasts and fungi, these antifungal lipopeptides produced by optimized method promise to aid in the development of novel antifungal that targets disease-causing fungi with improved efficacy.


2021 ◽  
Vol 7 (2) ◽  
pp. 109
Author(s):  
Viridiana Morales-Sánchez ◽  
Carmen E. Díaz ◽  
Elena Trujillo ◽  
Sonia A. Olmeda ◽  
Felix Valcarcel ◽  
...  

In the current study, an ethyl acetate extract from the endophytic fungus Aspergillus sp. SPH2 isolated from the stem parts of the endemic plant Bethencourtia palmensis was screened for its biocontrol properties against plant pathogens (Fusarium moniliforme, Alternaria alternata, and Botrytis cinerea), insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi), plant parasites (Meloidogyne javanica), and ticks (Hyalomma lusitanicum). SPH2 gave extracts with strong fungicidal and ixodicidal effects at different fermentation times. The bioguided isolation of these extracts gave compounds 1–3. Mellein (1) showed strong ixodicidal effects and was also fungicidal. This is the first report on the ixodicidal effects of 1. Neoaspergillic acid (2) showed potent antifungal effects. Compound 2 appeared during the exponential phase of the fungal growth while neohydroxyaspergillic acid (3) appeared during the stationary phase, suggesting that 2 is the biosynthetic precursor of 3. The mycotoxin ochratoxin A was not detected under the fermentation conditions used in this work. Therefore, SPH2 could be a potential biotechnological tool for the production of ixodicidal extracts rich in mellein.


2021 ◽  
Vol 185 ◽  
pp. 112701
Author(s):  
Xiao-Yan Zhang ◽  
Xiang-Mei Tan ◽  
Meng Yu ◽  
Jian Yang ◽  
Bing-Da Sun ◽  
...  

Author(s):  
Jeremy C Jones ◽  
Philippe N Q Pascua ◽  
Walter N Harrington ◽  
Richard J Webby ◽  
Elena A Govorkova

Abstract Background Baloxavir marboxil is an antiviral drug that targets the endonuclease activity of the influenza virus polymerase acidic (PA) protein. PA I38T/M/F substitutions reduce its antiviral efficacy. Objectives To understand the effects of the 19 possible amino acid (AA) substitutions at PA 38 on influenza A(H1N1)pdm09 polymerase activity and inhibition by baloxavir acid, the active metabolite of baloxavir marboxil. Methods Influenza A(H1N1)pdm09 viral polymerase complexes containing all 19 I38X AA substitutions were reconstituted in HEK293T cells in a mini-replicon assay. Polymerase complex activity and baloxavir inhibitory activity were measured in the presence or absence of 50 nM baloxavir acid. Results Only three substitutions (R, K, P) reduced polymerase activity to <79% of I38-WT. When compared with the prototypical baloxavir marboxil resistance marker T38, 5 substitutions conferred 10%–35% reductions in baloxavir acid inhibitory activity (M, L, F, Y, C) and 11 substitutions conferred >50% reductions (R, K, S, N, G, W, A, Q, E, D, H), while two substitutions (V, P) maintained baloxavir acid inhibitory activity. Conclusions Most PA 38 substitutions permit a functional replication complex retaining some drug resistance in the mini-replicon assay. This study provides a targeted approach for virus rescue and analysis of novel baloxavir marboxil reduced-susceptibility markers, supports the consideration of a broader range of these markers during antiviral surveillance and adds to the growing knowledge of baloxavir marboxil resistance profiles.


Bionatura ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2187-2192
Author(s):  
Rashid Rahim Hateet ◽  
Zainab Alag Hassan ◽  
Abdulameer Abdullah Al-Mussawi ◽  
Shaima Rabeea Banoon

The present study aimed to optimize cultural conditions for optimum bioactive metabolite production by endophytic fungus Trichoderma harzianum, isolated by surface sterilization method from the leaf of the eucalyptus plant. The fungus was identified based on morphological characterization. Fungal metabolites were carried out by ethyl acetate solvent. The antibacterial activity was tested against Escherichia coli (ATCC 25922) and Staphylococcus aureus (NCTC 6571). Various carbon, nitrogen sources, pH, temperature, incubation period, and NaCl on the antibacterial metabolite production were studied. Bioactive metabolite production of T. harzianum exhibits a broad spectrum of in vitro antibacterial activity against two strains of bacteria. For the optimum production of bioactive metabolites, Dextrose and Glucose were found to be the best sources of carbon and the best sources of Nitrogen Yeast extract (YE) and (NH4)2SO. The maximum production of bioactive metabolites occurs at pH 7 and 25°C.; the NaCl showed a positive influence on bioactive metabolites.


2016 ◽  
Vol 4 (2) ◽  
pp. 224
Author(s):  
Savita Joshi ◽  
S. C. Sati ◽  
Parikshit Kumar

An increasing demand for natural plant products has shifted the attention from synthetic to natural antifungal agents. This study was   carried out to evaluate the antifungal activity of methanol, ethanol, chloroform, hexane and water extracts of Biota orientalis Endl. leaves, a Kumaun Himalayan gymnospermic plant. The antifungal potential of all extracts of B. orientalis were tested against seven different fungal strains (Alternaria alternata, Colletotrichum falcatum, Fusarium oxysporum, Pyricularia oryzae, Sclerotinia rolfsii, Sclerotinia sclerotiorum and Tilletia indica) using agar-well diffusion method. The ethanol extract was found most active against all the pathogens tested (Percent inhibition, 27-59%) followed by hexane extract (Percent inhibition, 31-58%) and methanol extract (27-57%) while     chloroform and aqueous extracts were found totally inactive against all the tested fungal strains, only chloroform extract showed       inhibitory activity against S. rolfsii (% inhibition, 58%). The inhibitory activity of these extracts was found very effective as compared to Clotrimazol, standard antifungal agent that was used as positive control against tested fungal strains.


2020 ◽  
Vol 7 (1) ◽  
pp. 112-125
Author(s):  
Djamel Eddine Laib ◽  
Abdelmadjid Benzara ◽  
Salah Akkal ◽  
Chawki Bensouici

AbstractThis study was conducted to evaluate anti-acetylcholinesterase and insecticidal and antifungal activities of the endophytic fungus Trichoderma sp, isolated from Ricinus communis L. leaves, against Locusta migratoria L. and Botrytis cinerea Pers.: Fr.. To evaluate the insecticidal and antifungal activities, different concentrations of the fungal extract were applied against L. migratoria (0.2, 0.3, 0.4 g/l) and against B. cinerea (1, 2, 3 g/l). It was found that the mortality of the targeted insects was positively proportional to fungal extract concentration and time after exposure (24, 48, 72 hours). The concentration 0.4 g/l appeared to be the most effective after 72 hours with mortality rate of 56.52%. Regarding antifungal activity, the concentration 3 g/l was the most effective against B. cinerea after 7 days, with an inhibition rate of 92.06% (excellent antifungal activity). Moreover, it was found that at 4 ug/ml the fungal extract had a maximum inhibitory capacity of Ache of 80% for acetylcholenesterase. Preliminary phytochemical analyses revealed the presence of alkaloids, flavonoids, phenols and saponins. In addition the colony of this endophytic fungus produced chitinases and proteases, which explained its important antifungal and insecticidal activities.


2018 ◽  
Vol 20 (1) ◽  
pp. 1-7
Author(s):  
Anastasia Wheni Indrianingsih ◽  
Amalia Indah Prihantini ◽  
Sanro Tachibana

AbstractEndophytic fungi are the microorganisms that spend all or part of their life cycles within plant tissue without causing harmful effects on the plant. In this study, 14 endophytic fungus from Quercus phillyraeoides A. Gray were isolated. Alternaria sp. QPS 05, an endophytic fungi which was isolated from the stem of Q. phillyraeoides A. Gray showed the highest α-glucosidase inhibitory activity. Further separation of ethyl acetate extract from the fungus led to the isolation of active substance from hexane-soluble fraction which give fatty acids mixture consist of palmitic acid, oleic acid, linoleic acid and linolenic acid (1) strong inhibitory activity against α-glucosidase. Isolated fatty acids (1) had inhibitory concentration (IC50) values against Saccharomyces cerevisiae was 12.10 μg/mL. The results of the present study showed that endophytic fungus from Alternaria sp. QPS 05 potentially contained a rich source of natural antidiabetic medicine.


Sign in / Sign up

Export Citation Format

Share Document