scholarly journals Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B

Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3764-3773 ◽  
Author(s):  
Shuyun Rao ◽  
Sang-Yun Lee ◽  
Alejandro Gutierrez ◽  
Jacqueline Perrigoue ◽  
Roshan J. Thapa ◽  
...  

Abstract Ribosomal protein (RP) mutations in diseases such as 5q− syndrome both disrupt hematopoiesis and increase the risk of developing hematologic malignancy. However, the mechanism by which RP mutations increase cancer risk has remained an important unanswered question. We show here that monoallelic, germline inactivation of the ribosomal protein L22 (Rpl22) predisposes T-lineage progenitors to transformation. Indeed, RPL22 was found to be inactivated in ∼ 10% of human T-acute lymphoblastic leukemias. Moreover, monoallelic loss of Rpl22 accelerates development of thymic lymphoma in both a mouse model of T-cell malignancy and in acute transformation assays in vitro. We show that Rpl22 inactivation enhances transformation potential through induction of the stemness factor, Lin28B. Our finding that Rpl22 inactivation promotes transformation by inducing expression of Lin28B provides the first insight into the mechanistic basis by which mutations in Rpl22, and perhaps some other RP genes, increases cancer risk.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Keisuke Yoshida ◽  
Rika Hirano ◽  
Yohei Sakai ◽  
Moonhak Choi ◽  
Mikiyasu Sakanaka ◽  
...  

AbstractThis study aims to understand the mechanistic basis underlying the response of Bifidobacterium to lactulose ingestion in guts of healthy Japanese subjects, with specific focus on a lactulose transporter. An in vitro assay using mutant strains of Bifidobacterium longum subsp. longum 105-A shows that a solute-binding protein with locus tag number BL105A_0502 (termed LT-SBP) is primarily involved in lactulose uptake. By quantifying faecal abundance of LT-SBP orthologues, which is defined by phylogenetic analysis, we find that subjects with 107 to 109 copies of the genes per gram of faeces before lactulose ingestion show a marked increase in Bifidobacterium after ingestion, suggesting the presence of thresholds between responders and non-responders to lactulose. These results help predict the prebiotics-responder and non-responder status and provide an insight into clinical interventions that test the efficacy of prebiotics.


2004 ◽  
Vol 190 (5) ◽  
pp. 343-357 ◽  
Author(s):  
F. Clarac ◽  
E. Pearlstein ◽  
J. F. Pflieger ◽  
L. Vinay

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


1998 ◽  
Vol 26 (4) ◽  
pp. 421-480
Author(s):  
Krys Bottrill

Recent developments in biomarkers relating to the interrelationship of diet, disease and health were surveyed. Most emphasis was placed on biomarkers of deleterious effects, since these are of greatest relevance to the subject of this review. The area of greatest activity was found to be that relating to biomarkers of mutagenic, genotoxic and carcinogenic effects. This is also one of the major areas of concern in considerations of the beneficial and deleterious effects of dietary components, and also the area in which regulatory testing requires studies of the longest duration. A degree of progress has also been made in the identification and development of biomarkers relating to certain classes of target organ toxicity. Biomarkers for other types of toxicity, such as immunotoxicity, neurotoxicity, reproductive toxicity and developmental toxicity, are less developed, and further investigation in these areas is required before a comprehensive biomarker strategy can be established. A criticism that recurs constantly in the biomarker literature is the lack of standardisation in the methods used, and the lack of reference standards for the purposes of validation and quality control. It is encouraging to note the growing acknowledgement of the need for validation of biomarkers and biomarker assays. Some validation studies have already been initiated. This review puts forward proposals for criteria to be used in biomarker validation. More discussion on this subject is required. It is concluded that the use of biomarkers can, in some cases, facilitate the implementation of the Three Rs with respect to the testing of food chemicals and studies on the effects of diet on health. The greatest potential is seen to be in the refinement of animal testing, in which biomarkers could serve as early and sensitive endpoints, in order to reduce the duration of the studies and also reduce the number of animals required. Biomarkers could also contribute to establishing a mechanistic basis for in vitro test systems and to facilitating their validation and acceptance. Finally, the increased information that could result from the incorporation of biomarker determinations into population studies could reduce the need for supplementary animal studies. This review makes a number of recommendations concerning the prioritisation of future activities on dietary biomarkers in relation to the Three Rs. It is emphasised, however, that further discussions will be required among toxicologists, epidemiologists and others researching the relationship between diet and health.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2344
Author(s):  
Elisabeth A. George ◽  
Navya Baranwal ◽  
Jae H. Kang ◽  
Abrar A. Qureshi ◽  
Aaron M. Drucker ◽  
...  

(1) The incidence of skin cancer is increasing in the United States (US) despite scientific advances in our understanding of skin cancer risk factors and treatments. In vitro and in vivo studies have provided evidence that suggests that certain photosensitizing medications (PSMs) increase skin cancer risk. This review summarizes current epidemiological evidence on the association between common PSMs and skin cancer. (2) A comprehensive literature search was conducted to identify meta-analyses, observational studies and clinical trials that report on skin cancer events in PSM users. The associated risks of keratinocyte carcinoma (squamous cell carcinoma and basal cell carcinoma) and melanoma are summarized, for each PSM. (3) There are extensive reports on antihypertensives and statins relative to other PSMs, with positive and null findings, respectively. Fewer studies have explored amiodarone, metformin, antimicrobials and vemurafenib. No studies report on the individual skin cancer risks in glyburide, naproxen, piroxicam, chlorpromazine, thioridazine and nalidixic acid users. (4) The research gaps in understanding the relationship between PSMs and skin cancer outlined in this review should be prioritized because the US population is aging. Thus the number of patients prescribed PSMs is likely to continue to rise.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiuye Li ◽  
W. Michael Babinchak ◽  
Witold K. Surewicz

AbstractAmyotrophic lateral sclerosis and several other neurodegenerative diseases are associated with brain deposits of amyloid-like aggregates formed by the C-terminal fragments of TDP-43 that contain the low complexity domain of the protein. Here, we report the cryo-EM structure of amyloid formed from the entire TDP-43 low complexity domain in vitro at pH 4. This structure reveals single protofilament fibrils containing a large (139-residue), tightly packed core. While the C-terminal part of this core region is largely planar and characterized by a small proportion of hydrophobic amino acids, the N-terminal region contains numerous hydrophobic residues and has a non-planar backbone conformation, resulting in rugged surfaces of fibril ends. The structural features found in these fibrils differ from those previously found for fibrils generated from short protein fragments. The present atomic model for TDP-43 LCD fibrils provides insight into potential structural perturbations caused by phosphorylation and disease-related mutations.


Author(s):  
Patrick J. Sheehan ◽  
Ryan C. Lewis ◽  
Christopher R. Kirman ◽  
Heather N. Watson ◽  
Eric D. Winegar ◽  
...  

Given ubiquitous human exposure to ethylene oxide (EO), regardless of occupation or geography, the current risk-specific concentrations (RSCs: 0.0001–0.01 ppb) from the U.S. Environmental Protection Agency (EPA) cancer risk assessment for EO are not useful metrics for managing EO exposures to the general U.S. population. The magnitude of the RSCs for EO are so low, relative to typical endogenous equivalent metabolic concentrations (1.1–5.5 ppb) that contribute ~93% of total exposure, that the RSCs provide little utility in identifying excess environmental exposures that might increase cancer risk. EO monitoring data collected in the vicinity of eight EO-emitting facilities and corresponding background locations were used to characterize potential excess exogenous concentrations. Both 50th and 90th percentile exogenous exposure concentrations were combined with the 50th percentile endogenous exposure concentration for the nonsmoking population, and then compared to percentiles of total equivalent concentration for this population. No potential total exposure concentration for these local populations exceeded the normal total equivalent concentration 95th percentile, indicating that excess facility-related exposures are unlikely to require additional management to protect public health.


2021 ◽  
Vol 20 ◽  
pp. 153303382098011
Author(s):  
Junjun Shu ◽  
Ling Xiao ◽  
Sanhua Yan ◽  
Boqun Fan ◽  
Xia Zou ◽  
...  

Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.


Sign in / Sign up

Export Citation Format

Share Document