scholarly journals Circular RNAs of the Nucleophosmin 1 (NPM1) Gene in Acute Myeloid Leukemia Patients

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2695-2695
Author(s):  
Susanne Hirsch ◽  
Tamara J. Blätte ◽  
Sarah Grasedieck ◽  
Arefeh Rouhi ◽  
Mojca Jongen-Lavrencic ◽  
...  

Abstract Background: The nucleophosmin 1 (NPM1) gene is not only commonly mutated in acute myeloid leukemia (AML), but also encodes several linear splice isoforms, one of which was recently shown to be of prognostic importance. Furthermore, circular RNAs (circRNAs) are transcribed from the NPM1 gene which demands further investigation with regard to function in normal hematopoiesis and impact on leukemogenesis. Aims: We aimed to investigate circRNAs derived from NPM1 and gain insights into their regulation and function. Additionally, we wanted to determine changes in the circular RNAome in the course of hematopoietic differentiation and leukemic transformation. Methods: Circular NPM1 transcripts were detected by PCR and sequenced in leukemic cell lines (n=7) and healthy control samples (n=3, peripheral blood-derived mononuclear cells). Expression of hsa_circ_0075001 and total NPM1 was measured in a cohort of 23 NPM1 wildtype (NPM1wt) and 23 NPM1 mutated (NPM1mut) AML patients via quantitative real-time PCR (qPCR), and Affymetrix U133plus2 microarray data was set in relation to the expression levels. Principal component analysis (PCA) was conducted to identify groups with similarities in gene expression patterns and differentially expressed genes were subjected to pathway analysis. Next, ribosomal RNA-depleted RNA-seq was performed for 5 NPM1mut and 5 NPM1wt AML cases, as well as 10 healthy control samples derived from 4 FACS-sorted myeloid differentiation stages (myeloblasts, promyelocytes, metamyelocytes and neutrophils). PCA and unsupervised hierarchical clustering were performed based on circRNA expression. Results: We detected and sequenced multiple circular NPM1 transcripts (n=23) in leukemic as well as in healthy control cells. As hsa_circ_0075001 showed differential expression between different AML cell lines in a semi-quantitative PCR analysis, quantification in 46 AML patients via qPCR was performed. This analysis revealed that total NPM1 and hsa_circ_0075001 expression were independent of the NPM1 mutational status. Furthermore, the hsa_circ_0075001 expression status defined distinct leukemia subgroups characterized by similarities in gene expression as determined by PCA. For example, differentially expressed genes between high versus low hsa_circ_0075001 expression groups (dichotomized at the median) were significantly enriched in components of the Toll-like receptor (TLR) signaling pathway, which was downregulated in patients with high hsa_circ_0075001 expression. Expression of hsa_circ_0075001 correlated positively with total NPM1 expression, and RNA-seq analysis further revealed a global correlation of circRNA and parental gene expression. In total, in our cohort circRNAs were found for 19 % of all expressed genes. PCA based on circRNA expression illustrated that immature and mature hematopoietic cells, as well as NPM1wt and NPM1mut AML samples, exhibit distinct circRNA signatures (Figure 1). Thus, circRNA expression seems to play a role during differentiation of normal hematopoietic cells, but also seems to be severely deregulated in AML. Figure 1: Altered circular RNA expression in AML patients compared to healthy control samples. Principal component analysis (PCA) of circRNA expression data of 5 NPM1mut patients (red), 5 NPM1wt patients (green), and 10 healthy control samples, of which 4 were derived from immature (blue) and 6 from more mature myeloid differentiation stages (purple). Data was generated via RNA-Seq and reads derived from circRNAs were aligned and quantified using STAR, and normalized and transformed using DESeq2. PCA was performed based on 500 genes with the highest variance of circRNA expression across all samples. Conclusions: circRNAs transcribed from the NPM1 gene showed differential expression in AML cell lines and healthy cells, and higher hsa_circ_0075001 expression defined an AML subgroup characterized by downregulation of the TLR signaling pathway. These findings provide evidence for the relevance of circular NPM1 transcripts and add another level of complexity to the multifaceted gene NPM1. In general, circRNA expression seems to be involved in the regulation of hematopoietic differentiation, which is in line with previous observations, but, based on distinct circRNA expression profiles in AML, they might also play a significant pathogenic role in leukemic transformation. Figure 1 Figure 1. Disclosures Paschka: Celgene: Honoraria; Pfizer Pharma GmbH: Honoraria; Bristol-Myers Squibb: Honoraria; Medupdate GmbH: Honoraria; Novartis: Consultancy; ASTEX Pharmaceuticals: Consultancy.

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 588
Author(s):  
Adam Ustaszewski ◽  
Magdalena Kostrzewska-Poczekaj ◽  
Joanna Janiszewska ◽  
Malgorzata Jarmuz-Szymczak ◽  
Malgorzata Wierzbicka ◽  
...  

Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: “malignancy”, which separated controls from malignant samples and “cell culture-microenvironment” which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples.


2020 ◽  
Vol 21 (8) ◽  
pp. 2748 ◽  
Author(s):  
Ruth Barral-Arca ◽  
Alberto Gómez-Carballa ◽  
Miriam Cebey-López ◽  
María José Currás-Tuala ◽  
Sara Pischedda ◽  
...  

There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4117
Author(s):  
Y-h. Taguchi ◽  
Turki Turki

The development of the medical applications for substances or materials that contact cells is important. Hence, it is necessary to elucidate how substances that surround cells affect gene expression during incubation. In the current study, we compared the gene expression profiles of cell lines that were in contact with collagen–glycosaminoglycan mesh and control cells. Principal component analysis-based unsupervised feature extraction was applied to identify genes with altered expression during incubation in the treated cell lines but not in the controls. The identified genes were enriched in various biological terms. Our method also outperformed a conventional methodology, namely, gene selection based on linear regression with time course.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4496-4496
Author(s):  
Debabrata Banerjee ◽  
Guray Saydam ◽  
Lata G. Menon ◽  
Giuseppe S.A. Longo ◽  
Daniel Medina ◽  
...  

Abstract Aplidin (dehydrodidemnin B, C57H89N7O15) (APLD) is a novel antitumor agent isolated from the Mediterranean tunicate (seasquirt) Aplidium albicans. APLD has shown impressive in vitro and in vivo activity against different human cancer cells and has recently entered Phase II clinical trials in a variety of solid tumors following promising toxicity and pharmacological properties seen in Phase I studies. Fatigue and muscular pain were the most prevalent toxicities at 5 mg/m2 iv 3 h every other week or 3.4 mg/m2/wk with little or no bone marrow toxicity. APLD inhibits protein synthesis via GTP-dependent elongation factors 1-alpha and ornithine decarboxylase (ODC) activity, induces rapid p53-independent apoptosis in vitro, cell cycle perturbation and alteration of gene expression at early times after treatment. APLD inhibits vascular endothelial growth factor (VEGF) secretion and vascular endothelial growth factor-receptor 1 (VEGF-R1/flt-1), preventing autocrine stimulation in the human lymphoid leukemic cell line MOLT-4 cells and in AML blasts. APLD is a potent inhibitor of human myeloid leukemia cell lines (K-562, HEL and HL60), as well as fresh blast cells obtained from patients with both ALL and AML and is more potent than Idarubicin. Cytototoxic doses effective against multiple myeloma cells and fresh pediatric and adult ALL/AML blasts are achievable in plasma and are well below the recommended dose, thus a positive therapeutic index is anticipated. Moreover, the lack of cross resistance with conventional agents against fresh pediatric and adult AML/ALL blasts except fludarabine and Gemcitabine makes APLD an attractive therapeutic choice. Characterization of gene expression profile is currently underway in an attempt to generate a molecular fingerprint of sensitivity/resistance to APLD that will be validated in phase II clinical studies. Based on in vitro antileukemic effect of APLD as well as early results of clinical trials, a systematic study of drug combinations with Aplidin (APLD), for use possible in hematologic malignancies was undertaken. Three cell lines viz. K562 (acute myeloid leukemia), CCRF-CEM (acute lymphocytic leukemia), and SKI-DLCL (diffuse large cell lymphoma) were used for combination studies. Cytarabine and mitoxantrone were found to be synergistic in combination with APLD in all 3 cell lines as assessed by the Chou-Talalay combination index analysis. Since cytarabine and APLD produced impressive synergistic cell kill in all three cell culture models, the combination was further tested in the CCRF-CEM ALL xenograft model in SCID mice. APLD (0.7 mg/Kg) potentiated the antitumoral effect of cytarabine (50mg/Kg) in vivo. Addition of APLD to cytarabine treatment in xenograft model resulted in greater than 50% reduction in tumor size as compared to the untreated group. T/C ratios indicated that the effect of the combination was maximal at day 5 but was still maintained on day 8 (T/C on day 3 = 0.614; day 5= 0.403 and day 8= 0.703). The preclinical results with APLD in leukemias and lymphomas, as a single agent and in combination with cytarabine provide the basis for implementation of a phase II program in resistant relapsed leukemias and lymphomas.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2605-2605
Author(s):  
Lars Bullinger ◽  
Konstanze Dohner ◽  
Richard F. Schlenk ◽  
Frank G. Rucker ◽  
Jonathan R. Pollack ◽  
...  

Abstract Inhibitors of histone deacetylases (HDACIs) like valproic acid (VPA) display activity in murine leukemia models, and induce tumor-selective cytoxicity against blasts from patients with acute myeloid leukemia (AML). However, despite of the existing knowledge of the potential function of HDACIs, there remain many unsolved questions especially regarding the factors that determine whether a cancer cell undergoes cell cycle arrest, differentiation, or death in response to HDACIs. Furthermore, there is still limited data on HDACIs effects in vivo, as well as HDACIs function in combination with standard induction chemotherapy, as most studies evaluated HDACIs as single agent in vitro. Thus, our first goal was to determine a VPA response signature in different myeloid leukemia cell lines in vitro, followed by an in vivo analysis of VPA effects in blasts from adult de novo AML patients entered within two randomized multicenter treatment trials of the German-Austrian AML Study Group. To define an VPA in vitro “response signature” we profiled gene expression in myeloid leukemia cell lines (HL-60, NB-4, HEL-1, CMK and K-562) following 48 hours of VPA treatment by using DNA Microarray technology. In accordance with previous studies in vitro VPA treatment of myeloid cell lines induced the expression of the cyclin-dependent kinase inhibitors CDKN1A and CDKN2D coding for p21 and p19, respectively. Supervised analyses revealed many genes known to be associated with a G1 arrest. In all cell lines except for CMK we examined an up-regulation of TNFSF10 coding for TRAIL, as well as differential regulation of other genes involved in apoptosis. Furthermore, gene set enrichment analyses showed a significant down-regulation of genes involved in DNA metabolism and DNA repair. Next, we evaluated the VPA effects on gene expression in AML samples collected within the AMLSG 07-04 trial for younger (age<60yrs) and within the AMLSG 06-04 trial for older adults (age>60yrs), in which patients are randomized to receive standard induction chemotherapy (idarubicine, cytarabine, and etoposide = ICE) with or without concomitant VPA. We profiled gene expression in diagnostic AML blasts and following 48 hours of treatment with ICE or ICE/VPA. First results from our ongoing analysis of in vivo VPA treated samples are in accordance with our cell line experiments as e.g. we also see an induction of CDKN1A expression. However, the picture observed is less homogenous as concomitant administration of ICE, as well as other factors, like e.g. VPA serum levels, might substantially influence the in vivo VPA response. Nevertheless, our data are likely to provide new insights into the VPA effect in vivo, and this study may proof to be useful to predict AML patients likely to benefit from VPA treatment. To achieve this goal, we are currently analyzing additional samples, and we are planning to correlate gene expression findings with histone acetylation status, VPA serum levels, cytogenetic, and molecular genetic data.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1275-1275
Author(s):  
Sonja C Lück ◽  
Annika C Russ ◽  
Konstanze Döhner ◽  
Ursula Botzenhardt ◽  
Domagoj Vucic ◽  
...  

Abstract Abstract 1275 Poster Board I-297 Core binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the core binding factor, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, 40-50% of patients relapse, and the current classification system does not fully reflect the heterogeneity existing within the cytogenetic subgroups. Therefore, illuminating the biological mechanisms underlying these differences is important for an optimization of therapy. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences (Bullinger et al., Blood 2007). In order to further characterize these GEP defined CBF subgroups, we again used gene expression profiles to identify cell line models similar to the respective CBF cohorts. Treatment of these cell lines with cytarabine (araC) revealed a differential response to the drug as expected based on the expression patterns reflecting the CBF subgroups. In accordance, the cell lines resembling the inferior outcome CBF cohort (ME-1, MONO-MAC-1, OCI-AML2) were less sensitive to araC than those modeling the good prognostic subgroup (Kasumi-1, HEL, MV4-11). A previous gene set enrichment analysis had identified the pathways Caspase cascade in apoptosis and Role of mitochondria in apoptotic signaling among the most significant differentially regulated BioCarta pathways distinguishing the two CBF leukemia subgroups. Thus, we concluded that those pathways might be interesting targets for specific intervention, as deregulated apoptosis underlying the distinct subgroups should also result in a subgroup specific sensitivity to apoptotic stimuli. Therefore, we treated our model cell lines with the Smac mimetic BV6, which antagonizes inhibitor of apoptosis (IAP) proteins that are differentially expressed among our CBF cohorts. In general, sensitivity to BV6 treatment was higher in the cell lines corresponding to the subgroup with good outcome. Time-course experiments with the CBF leukemia cell line Kasumi-1 suggested a role for caspases in this response. Interestingly, combination treatment of araC and BV6 in Kasumi-1 showed a synergistic effect of these drugs, with the underlying mechanisms being currently further investigated. Based on the promising sensitivity to BV6 treatment in some cell lines, we next treated mononuclear cells (mostly leukemic blasts) derived from newly diagnosed AML patients with BV6 in vitro to evaluate BV6 potency in primary leukemia samples. Interestingly, in vitro BV6 treatment also discriminated AML cases into two distinct populations. Most patient samples were sensitive to BV6 monotherapy, but about one-third of cases were resistant even at higher BV6 dosage. GEP of BV6 sensitive patients (at 24h following either BV6 or DMSO treatment) provided insights into BV6-induced pathway alterations in the primary AML patient samples, which included apoptosis-related pathways. In contrast to the BV6 sensitive patients, GEP analyses of BV6 resistant cases revealed no differential regulation of apoptosis-related pathways in this cohort. These results provide evidence that targeting deregulated apoptosis pathways by Smac mimetics might represent a promising new therapeutic approach in AML and that GEP might be used to predict response to therapy, thereby enabling novel individual risk-adapted therapeutic approaches. Disclosures Vucic: Genentech, Inc.: Employment. Deshayes:Genentech, Inc.: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3964-3964 ◽  
Author(s):  
Ryan G. Kruger ◽  
Helai Mohammad ◽  
Kimberly Smitheman ◽  
Monica Cusan ◽  
Yan Liu ◽  
...  

Abstract Lysine specific demethylase 1 (LSD1) is a histone H3K4me1/2 demethylase found in various transcriptional co-repressor complexes. These complexes include Histone Deacetylases (HDAC1/2) and Co-Repressor for Element-1-Silencing Transcription factor (CoREST). LSD1 mediated H3K4 demethylation can result in a repressive chromatin environment that silences gene expression. LSD1 has been shown to play a role in development in various contexts. LSD1 can interact with pluripotency factors in human embryonic stem cells and is important for decommissioning enhancers in stem cell differentiation. Beyond embryonic settings, LSD1 is also critical for hematopoietic differentiation. LSD1 is overexpressed in multiple cancer types and recent studies suggest inhibition of LSD1 reactivates the all-trans retinoic acid receptor pathway in acute myeloid leukemia (AML). These studies implicate LSD1 as a key regulator of the epigenome that modulates gene expression through post-translational modification of histones and through its presence in transcriptional complexes. The current study describes the anti-tumor effects of a novel LSD1 inhibitor (GSK2879552) in AML. GSK2879552 is a potent, selective, mechanism-based, irreversible inhibitor of LSD1. Screening of over 150 cancer cell lines revealed that AML cells have a unique requirement for LSD1. While LSD1 inhibition did not affect the global levels of H3K4me1 or H3K4me2, local changes in these histone marks were observed near transcriptional start sites of putative LSD1 target genes. This increase in the transcriptionally activating histone modification correlated with a dose dependent increase in gene expression. Treatment with GSK2879552 promoted the expression of cell surface markers, including CD11b and CD86, associated with a differentiated immunophenotype in 12 of 13 AML cell lines. For example, in SKM-1 cells, increases in cell surface expression of CD86 and CD11b occurred after as early as one day of treatment with EC50 values of 13 and 7 nM respectively. In a separate study using an MV-4-11 engraftment model, increases in CD86 and CD11b were observed as early as 8 hours post dosing. GSK2879552 treatment resulted in a potent anti-proliferative growth effect in 19 of 25 AML cell lines (average EC50 = 38 nM), representing a range of AML subtypes. Potent growth inhibition was also observed on AML blast colony forming ability in 4 out of 5 bone marrow samples derived from primary AML patient samples (average EC50 = 205 nM). The effects of LSD1 inhibition were further characterized in an in vivo mouse model of AML induced by transduction of mouse hematopoietic progenitor cells with a retrovirus encoding MLL-AF9 and GFP. Primary AML cells were transplanted into a cohort of secondary recipient mice and upon engraftment, the mice were treated for 17 days. After 17 days of treatment, control treated mice had 80% GFP+ cells in the bone marrow whereas treated mice possessed 2.8% GFP positive cells (p<0.012). The percentage of GFP+ cells continued to decrease to 1.8% by 1-week post therapy. Remarkably, in a preliminary assessment for survival, control-treated mice succumbed to AML by 28 days post transplant, while treated mice showed prolonged survival. Together, these data demonstrate that pharmacological inhibition of LSD1 may provide a promising treatment for AML by promoting differentiation and subsequent growth inhibition of AML blasts. GSK2879552 is currently in late preclinical development and clinical trials are anticipated to start in 2014. All studies were conducted in accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals and were reviewed the Institutional Animal Care and Use Committee either at GSK or by the ethical review process at the institution where the work was performed. Disclosures: Kruger: GlaxoSmithKline Pharmaceuticals: Employment. Mohammad:GlaxoSmithKline Pharmaceuticals: Employment. Smitheman:GlaxoSmithKline Pharmaceuticals: Employment. Liu:GlaxoSmithKline Pharmaceuticals: Employment. Pappalardi:GlaxoSmithKline Pharmaceuticals: Employment. Federowicz:GlaxoSmithKline Pharmaceuticals: Employment. Van Aller:GlaxoSmithKline Pharmaceuticals: Employment. Kasparec:GlaxoSmithKline Pharmaceuticals: Employment. Tian:GlaxoSmithKline Pharmaceuticals: Employment. Suarez:GlaxoSmithKline Pharmaceuticals: Employment. Rouse:GlaxoSmithKline Pharmaceuticals: Employment. Schneck:GlaxoSmithKline Pharmaceuticals: Employment. Carson:GlaxoSmithKline Pharmaceuticals: Employment. McDevitt:GlaxoSmithKline Pharmaceuticals: Employment. Ho:GlaxoSmithKline Pharmaceuticals: Employment. McHugh:GlaxoSmithKline Pharmaceuticals: Employment. Miller:GlaxoSmithKline Pharmaceuticals: Employment. Johnson:GlaxoSmithKline Pharmaceuticals: Employment. Armstrong:Epizyme Inc.: Has consulted for Epizyme Inc. Other. Tummino:GlaxoSmithKline Pharmaceuticals: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5158-5158
Author(s):  
Qi Shen ◽  
Sichu Liu ◽  
Yu Chen ◽  
Lijian Yang ◽  
Shaohua Chen ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder that occurs because of t(9;22)(q34;q11) translocations. The prognosis in CML improved markedly after introduction of abl tyrosine kinase inhibitors (TKI), still a lot of CML patients die due to abl mutation related drug resistance and the blast crisis, moreover, de novo or secondary TKI-resistance is a significant problem in CML. The aim of the study is to down-regulate the PPP2R5C gene expression in imatinib-sensitive or imatinib-resistant chronic myeloid leukemia (CML) cell lines: K562, K562R (imatinib resistance without abl gene mutation), 32D-Bcr-Abl WT (imatinib sensitive, murine CML cell lines with wild type abl gene) and 32D-Bcr-Abl T315I (imatinib resistance, with abl gene T315I mutation) and primary cells from CML patients by RNA interference, thereby inhibit the CML cells proliferation and induce apoptosis. PPP2R5C-siRNAs numbered 799 or 991 were obtained by chemosynthesis. Non-silencing siRNA control (SC)-treated, mock-transfected, untreated cells were used as controls. PPP2R5C expression in mRNA levels from CML cells were analyzed after siRNAs delivered by nucleofection using the real-time quantitative PCR. The PPP2R5C protein levels were analyzed by Western blotting. Cell proliferation in vitro was assayed by the cell count kit-8 method after treatment. The morphology and the percentage of apoptosis were revealed by Hoechst 33258 stain and flow cytometry (FCM). Bone marrow mononuclear cells (BM-MNCs) from healthy individuals were transferred by PPP2R5C-siRNA-991. BFU-E, CFU-Meg and CFU-GM were performed from PPP2R5C-siRNA-991 treated BM-MNCs by methyl cellulose semi-solid culturing method, to estimate the role of differentiation and proliferation in BM-MNCs after PPP2R5C-siRNA transfection. The results showed that both PPP2R5C-siRNA-799 and PPP2R5C-siRNA-991 took best silencing results after nucleofection in all of four cells and primary cells from CML patients. The reduction about 2 to 7 folds in PPP2R5C mRNA level was observed in PPP2R5C-siRNA799 or PPP2R5C-siRNA991 treated cells. And PPP2R5C protein expression inhibition rate reached 38.08%-55.26% at 48 or 72 h after treatment. The proliferation rates of PPP2R5C-siRNA-799 or 991 treated CML cells were significantly decreased at 72 h (P < 0.05). PPP2R5C-siRNA-799 or 991 treated CML cells lines showed a significantly increase in AnnexinV/PI-positive cells (apoptosis) (P < 0.05), similar results in the morphological changes of apoptosis were found by Hoechst 33258 staining test. PPP2R5C gene mRNA expression levels in BM-MNCs from healthy individuals were significantly lower than that in K562 cells (P < 0.05), and the expression level was not significant changed after PPP2R5C-siRNA-991 transfection. The formation of BFU-E, CFU-Meg and CFU-GM from BM-MNCs showed no significant difference between PPP2R5C-siRNA-991 treatment and MOCK control group (P > 0.05). In conclusions, suppression of PPP2R5C by RNA interference could inhibit the proliferation and induce the apoptosis effectively in CML cells either in imatinib sensitive or imatinib resistance cell lines, while no significant effect of PPP2R5C-siRNA on the proliferation and differentiation of BM-MNCs in vitro, suggesting that PPP2R5C-siRNA might specially target on the CML cells. Down-regulating the PPP2R5C gene expression might be considered as a new target therapeutic strategy in CML, especially in imatinib-resistant CML. Disclosures: Li: This work was supported by Grants from National Natural Science Foundation of China (30871091 and 91129720), the Collaborated grant for HK-Macao-TW of Ministry of Science and Technology (2012DFH30060), the Guangdong Science & Technology Project (2012B0506: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3609-3609
Author(s):  
Anna Eriksson ◽  
Albin Osterros ◽  
Sadia Hassan ◽  
Joachim Gullbo ◽  
Linda Rickardson ◽  
...  

Abstract Background: A promising strategy for new drug discovery is ‘repositioning’, in which a new indication for an existing drug is identified. Using this approach, known on-patent, off-patent, discontinued and withdrawn drugs with unrecognized cancer activity, can be rapidly advanced into clinical trials for the new indication. We here report findings from a library screen of pharmacologically active and mechanistically annotated compounds in leukemia cells from patients aiming at the identification of repositioning candidates. Methods and results: The LOPAC®, 1280substance library (Sigma-Aldrich), with 1266 mechanistically annotated compounds, were investigated for cytotoxic activity by the fluorometric microculture cytotoxicity assay (FMCA) on tumor cells from 12 patients with leukemia (4 acute lymphocytic leukemia, 4 acute myeloid leukemia [AML], 4 chronic lymphocytic leukemia), as well as on peripheral blood mononuclear cells (PBMC) from 4 healthy donors. Sixty-eight compounds were identified as hits, defined as having a cytotoxic activity (less than 50% cell survival compared with controls) in all leukemia subgroups at the 10µM drug concentration used for screening. Only one of the hit compounds, quinacrine, showed higher activity in the leukemic cells than in normal PBMCs and was therefore selected for further preclinical evaluation focusing on AML. The aminoacridine quinacrine has a wide range of biological and therapeutical applications, and has been used for decades outside hemato-oncology, notably as an anti-protozoal and anti-rheumatic drug. Its side effects and toxicity are well characterized. Quinacrine showed significant cytotoxic activity in all four AML cell lines tested (HL-60, Kasumi-1, KG1a and MV4-11). In tumor cells from another 9 patients with AML, the cytotoxic effect (IC50 median 1.8, range 0.8-4 µM) was significantly superior to that in normal lymphocytes and clearly dose-dependent. Analysis of quinacrine data from the National Cancer Institute growth inhibitory screen in 60 cell lines (NCI 60 GI 50 data) was performed with the help of the NCI Cellminer database (http://discover.nci.nih.gov/cellminer/), and indicated leukemia sensitivity. To examine the ability of quinacrine to reverse diagnosis-specific gene expression, we utilized the Nextbio bioinformatics software, with its gene expression signatures of drug exposed myeloid leukemia cell cultures (HL60). These queries showed that myeloid leukemias had high reversibility scores. Moreover, gene enrichment and drug correlation data revealed a strong association to ribosomal biogenesis nucleoli. Translation initiation was observed including a high drug-drug correlation with ellipticine, a known inhibitor of RNA polymerase I (Pol-I). To validate the latter results, gene expression analysis of HL-60 cells exposed to quinacrine were obtained using the protocol described by Lamb et al (Science, 2006, 313, 1929), showing down regulation of Pol-1 associated RNA. Supporting these findings, quinacrine induced early inhibition of protein synthesis. Conclusions: The anti-protozoal and anti-rheumatic drug quinacrine has significant in vitro activity in AML. The anti-leukemic effect may be mediated by targeting ribosomal biogenesis. Considering its favorable and well-known safety profile, clinical studies of quinacrine in AML should be considered. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 611-611 ◽  
Author(s):  
Teresa Ezponda ◽  
Relja Popovic ◽  
Yupeng Zheng ◽  
Behnam Nabet ◽  
Christine Will ◽  
...  

Abstract Genetic alterations of epigenetic regulators have become a recurrent theme in hematological malignancies. In particular, aberrations that alter the levels or distribution of methylation of lysine 27 on histone H3 (H3K27me) have emerged as a common feature of a wide variety of cancers, including multiple myeloma (MM). The histone demethylase UTX/KDM6A activates gene expression by removing the H3K27me3 repressive histone mark, counteracting the activity of EZH2, the enzyme that places this modification. UTX somatic inactivating mutations and deletions are found in up to 10% of MM cases; nevertheless, the epigenetic impact of UTX loss in MM and the mechanisms by which it contributes to this disease remain to be elucidated. To ascertain the biological impact of UTX loss, we used a recently identified isogenic cell line pair: ARP-1 (UTX wild-type) and ARD (UTX null). UTX-null ARD cells were engineered to express UTX in a doxycycline-inducible manner. UTX add-back slowed the proliferation rate of ARD cells, without affecting their viability. Soft agar assays demonstrated that UTX-null ARD cells have increased clonogenicity compared to UTX-wild-type ARP-1 cells. Re-expression of UTX partially reversed this effect, decreasing the number and size of colonies formed. ARD cells also showed increased adhesion to Hs-5 bone marrow stromal cells and to fibronectin than ARP-1 cells, an ability associated with cell survival and drug resistance. UTX add-back decreased the adhesive properties of ARD cells demonstrating this effect is dependent on UTX loss. Mass spectrometry analysis of the add-back system and a panel of UTX wild-type and mutant MM cell lines showed that global levels of H3K27me are not altered after UTX loss or upon its add-back. Therefore, UTX depletion may alter H3K27me at specific loci, and control the expression of a limited number of genes. To identify the genes and pathways that are altered upon UTX loss, we performed RNA-sequencing (RNA-seq) on the paired MM cell lines and the add-back system. This analysis revealed approximately 5,000 genes differentially expressed between ARP-1 and ARD cells. Re-expression of UTX in the UTX-null ARD cells reversed the expression of approximately 1,400 genes, most of them being upregulated upon reintroduction of UTX. Gene ontology analysis of genes responsive to UTX manipulation identified pathways such as JAK-STAT, cadherin, integrin and Wnt pathways. Many of these pathways are related to cell adhesion properties, correlating with the effects observed in vitro. Some examples of the genes which expression was restored upon UTX add-back are E-cadherin, whose loss has been associated with MM progression; and PTPN6, a negative regulator of the JAK-STAT pathway. Chromatin immunoprecipitation (ChIP) experiments at UTX target genes revealed a decrease in H3K27me3 and a concomitant increase in H3K4me3 upon UTX add-back, correlating with the observed changes in gene expression. As loss of UTX leads to a failure in the removal of H3K27me3, we hypothesized that UTX-null cells may be more dependent on EZH2 to maintain high H3K27me3 levels at specific loci. Treatment of the paired cell lines with the EZH2 inhibitor GSK343 for 7 days significantly decreased the viability of UTX-null ARD cells, but had no effect on the UTX wild-type ARP-1 cells. This effect was not exclusive to these cell lines, as treatment of a panel of UTX wild-type and mutant MM cells corroborated the increased sensitivity in UTX-mutant cells. RNA-seq of ARD cells treated with GSK343 for 7 days identified approximately 2,000 genes with altered expression in response to this drug, most of them being upregulated upon EZH2 inhibition. These genes partially overlapped with the genes that were responsive to UTX add-back, including E-cadherin, suggesting that treatment with EZH2 inhibitors is somewhat similar to UTX add-back. Collectively, this work demonstrates that loss of UTX alters the epigenetic landscape of MM cells, leading to altered expression of a specific set of genes, ultimately benefiting cells through increased proliferation, clonogenicity and adhesion. Moreover, inhibition of EZH2 partially reverses aberrations promoted by UTX loss and may represent a rationale therapy for the treatment of this type of MM. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document