scholarly journals Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeeshan Javed ◽  
Haleema Sadia ◽  
Muhammad Javed Iqbal ◽  
Shazia Shamas ◽  
Kausar Malik ◽  
...  

AbstractCancer is a complex disease orchestrated by various extrinsic and intrinsic pathways. In recent years, there has been a keen interest towards the development of natural extracts-based cancer therapeutics with minimum adverse effects. In pursuit of effective strategy, a wide variety of natural products-derived compounds have been addressed for their anticancer effects. Apigenin is a naturally-occurring flavonoid present abundantly in various fruits and vegetables. Decades of research have delineated the pharmacological and biological properties of apigenin. Specifically, the apigenin-mediated anticancer activities have been documented in various types of cancer, but the generalized scientific evidence encompassing various molecular interactions and processes, such as regulation of the apoptotic machinery, aberrant cell signaling and oncogenic protein network have not been comprehensively covered. In this sense, in this review we have attempted to focus on the apigenin-mediated regulation of oncogenic pathways in various cancers. We have also addressed the cutting-edge research which has unveiled the remarkable abilities of apigenin to interact with microRNAs to modulate key cellular processes, with special emphasis on the nano-formulations of apigenin that can help their targeted delivery and can be a therapeutic solution for the treatment of various cancers.

2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Shaopeng Wang ◽  
Caihua Zhang ◽  
Guang Yang ◽  
Yanzong Yang

Numerous studies have revealed that regular consumption of certain fruits and vegetables can reduce the risk of many diseases. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a spice and herbal medicine. It contains pungent phenolic substances collectively known as gingerols. 6-Gingerol is the major pharmacologically-active component of ginger. It is known to exhibit a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity, and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Taken together, this review summarizes the various in vitro and in vivo pharmacological aspects of 6-gingerol and the underlying mechanisms.


2021 ◽  
Vol 14 (11) ◽  
pp. 1069
Author(s):  
Pratibha Pandey ◽  
Fahad Khan ◽  
Huda A. Qari ◽  
Mohammad Oves

Cancer is a complex ailment orchestrated by numerous intrinsic and extrinsic pathways. Recent research has displayed a deep interest in developing plant-based cancer therapeutics for better management of the disease and limited side effects. A wide range of plant-derived compounds have been reported for their anticancer potential in the quest of finding an effective therapeutic approach. Rutin (vitamin P) is a low-molecular weight flavonoid glycoside (polyphenolic compound), abundantly present in various vegetables, fruits (especially berries and citrus fruits), and medicinal herbs. Numerous studies have delineated several pharmacological properties of rutin such as its antiprotozoal, antibacterial, anti-inflammatory, antitumor, antiviral, antiallergic, vasoactive, cytoprotective, antispasmodic, hypolipidemic, antihypertensive, and antiplatelet properties. Specifically, rutin-mediated anticancerous activities have been reported in several cancerous cell lines, but the most common scientific evidence, encompassing several molecular processes and interactions, including apoptosis pathway regulation, aberrant cell signaling pathways, and oncogenic genes, has not been thoroughly studied. In this direction, we attempted to project rutin-mediated oncogenic pathway regulation in various carcinomas. Additionally, we also incorporated advanced research that has uncovered the notable potential of rutin in the modulation of several key cellular functions via interaction with mRNAs, with major emphasis on elucidating direct miRNA targets of rutin as well as the process needed to transform these approaches for developing novel therapeutic interventions for the treatment of several cancers.


2020 ◽  
Vol 20 (21) ◽  
pp. 1868-1875
Author(s):  
Ghazala Butt ◽  
Ammad A. Farooqi ◽  
Aima Adylova ◽  
Rukset Attar ◽  
Seher Yilmaz ◽  
...  

Treatment options for effective treatment of cancer with minimum off-target effects and maximum clinical outcomes have remained overarching goals in the clinical oncology. Vitamin C has remained in the shadows of controversy since the past few decades; burgeoning evidence has started to shed light on wide-ranging anticancer effects exerted by Vitamin C to induce apoptosis in drug-resistant cancer cells, inhibit uncontrolled proliferation of the cancer cells and metastatic spread. Landmark achievements in molecular oncology have ushered in a new era, and researchers have focused on the identification of oncogenic pathways regulated by Vitamin C in different cancers. However, there are visible knowledge gaps in our understanding related to the ability of Vitamin C to modulate a myriad of transduction cascades. There are scattered pieces of scientific evidence about promising potential of Vitamin C to regulate JAK-STAT, TGF/SMAD, TRAIL and microRNAs in different cancers. However, published data is insufficient and needs to be investigated comprehensively to enable basic and clinical researchers to reap full benefits and promote result-oriented transition of Vitamin C into various phases of clinical trials. In this review, we will emphasize on available evidence related to the regulation of oncogenic cell signaling pathways by Vitamin C in different cancers. We will also highlight the conceptual gaps, which need detailed and cutting-edge research.


2019 ◽  
Vol 18 (30) ◽  
pp. 2555-2566 ◽  
Author(s):  
Bhaswati Chatterjee

The resistance to chemotherapeutics by the cancerous cells has made its treatment more complicated. Animal venoms have emerged as an alternative strategy for anti-cancer therapeutics. Animal venoms are cocktails of complex bioactive chemicals mainly disulfide-rich proteins and peptides with diverse pharmacological actions. The components of venoms are specific, stable, and potent and have the ability to modify their molecular targets thus making them good therapeutics candidates. The isolation of cancer-specific components from animal venoms is one of the exciting strategies in anti-cancer research. This review highlights the identified venom peptides and proteins from different venomous animals like snakes, scorpions, spiders, bees, wasps, snails, toads, frogs and sea anemones and their anticancer activities including inhibition of proliferation of cancer cells, their invasion, cell cycle arrest, induction of apoptosis and the identification of involved signaling pathways.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 395
Author(s):  
Aikaterini Berdiaki ◽  
Monica Neagu ◽  
Eirini-Maria Giatagana ◽  
Andrey Kuskov ◽  
Aristidis M. Tsatsakis ◽  
...  

The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.


2021 ◽  
Vol 22 (2) ◽  
pp. 518
Author(s):  
Adam James Ferrari ◽  
Ronny Drapkin ◽  
Rajan Gogna

Cell competition (CC) is a feature that allows tumor cells to outcompete and eliminate adjacent cells that are deemed less fit. Studies of CC, first described in Drosophila melanogaster, reveal a diversity of underlying mechanisms. In this review, we will discuss three recent studies that expand our understanding of the molecular features governing CC. In particular, we will focus on a molecular fitness fingerprint, oncogenic pathways, and the importance of cell junction stability. A fitness fingerprint, mediated by flower (hFWE) protein isoforms, dictates that cells expressing the flower-win isoforms will outcompete adjacent flower-loss-expressing cells. The impact of the flower protein isoforms is seen in cancer progression and may have diagnostic potential. The yes-associated protein (YAP) and TAZ transcription factors, central mediators of the oncogenic Hippo pathway, elevate peritumoral fitness thereby protecting against tumor progression and provide a suppressive barrier. Similarly, COL17A1 is a key component in hemidesmosome stability, and its expression in epidermal stem cells contributes to fitness competition and aging characteristics. The contributions of these pathways to disease development and progression will help define how CC is hijacked to favor cancer growth. Understanding these features will also help frame the diagnostic and therapeutic possibilities that may place CC in the crosshairs of cancer therapeutics.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1420
Author(s):  
Dirk M. Nettelbeck ◽  
Mathias F. Leber ◽  
Jennifer Altomonte ◽  
Assia Angelova ◽  
Julia Beil ◽  
...  

Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.


2021 ◽  
Vol 20 (1) ◽  
pp. 56-63
Author(s):  
Li Jiang ◽  
Zhi-Cheng Yao ◽  
Miao-Miao Liu ◽  
Run-Hui Ma ◽  
Kiran Thakur

Cervical cancer has always been the top malignant cancer among female cancers in the world. Due to its recurrence, metastasis rate, and drug resistance, the treatment results of cervical cancer have been unsatisfactory. Apigetrin is present in a variety of fruits and vegetables and has been reported to have antioxidant, free radical scavenging, anti-inflammatory, and anticancer activities. Therefore, this study focuses on the effect of apigetrin on the autophagy of cervical cancer HeLa cells based on the previous research. The results showed that apigetrin can enhance the autophagy fluorescence of light chain 3B (LC3B), and further combined with quantitative real-time PCR (qPCR) and Western blotting found that the expression of autophagy-related genes and proteins p-mTOR, Beclin1, and LC3B increased, while the expression of AMPK, ULK1, and p62 decreased. In addition, apigetrin also promoted the release of Ca2+, the PERK/eIF2α/ATF4/chop, and IRE1α pathways activate endoplasmic reticulum (ER) stress. The addition of 4PBA proved that ER stress promoted autophagy in HeLa cells. Finally, the addition of the 3-MA indicates the relationship between autophagy and apoptosis in HeLa cells. Our results indicate that apigetrin has a certain anticancer potential and can be used as a drug adjuvant and food additive for the prevention and treatment of cervical cancer.


Molecules ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 621 ◽  
Author(s):  
Jeong-Hyeon Ko ◽  
Seok-Geun Lee ◽  
Woong Yang ◽  
Jae-Young Um ◽  
Gautam Sethi ◽  
...  

Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 408-415 ◽  
Author(s):  
Rupalben Kaushalkumar Jani ◽  
Gohil Krupa

In nanomedicines, currently a wide array of reported nanoparticle systems is being explored by targeting schemes which suggests great potential of targeted delivery to revolutionize cancer therapeutics. This review  gives insight into recent  challenges in modification of nanoparticle systems for enhanced cancer therapy  acknowledged by researchers to date and also outlines different major targeting strategies of nanoparticle systems that have been utilized for the delivery of therapeutics or imaging agents, targeting ligand and cross-linking agent to cancer  which was divided into three sections: 1) Angiogenesis associated targeting, 2) Uncontrolled cell proliferation targeting and 3) Tumor cell targeting. Keywords: nanoparticles, tumor cells, active targeting, targeting strategies, targeting ligands


Sign in / Sign up

Export Citation Format

Share Document